[1] Janska A, Marsik P, Zelenkova S, et al. Cold stress and acclimation : what is important for metabolic adjustment?[J]. Plant Biol, 2010, 12 :395-405.
[2] Hauser MT, Aufsatz W, Jonak C, et al. Transgenerational epigenetic inheritance in plants[J]. Biochimica et Biophysica Acta, 2011, 1809 :459-468.
[3] Szabados L, Savoure A. Proline :a multifunctional amino acid[J]. Trend Plant Sci, 2010, 15 :89-97.
[4] Yamada M, Morishita H, Urano K, et al. Effects of free proline accumulation in petunias under drought stress[J]. J Exp Bot, 2005, 56 :1975-1981.
[5] Miller G, Honig A, et al. Unraveling delta1-pyrroline-5-carboxylateproline cycle in plants by uncoupled expression of proline oxidation enzymes[J]. J Biol Chem, 2009, 284 :26482-26492.
[6] Qu LJ, Wu LQ, Fan ZM, et al. Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance[J]. Plant Sci, 2005, 168 :297-302.
[7] Renault H, Roussel V, El Amrani A, et al. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance[J]. BMC Plant Biol, 2010, 10 :20.
[8] Fait A, Fromm H, et al. Highway or byway :the metabolic role of the GABA shunt in plants[J]. Trend Plant Sci, 2008, 13 :14-19.
[9] Liu C, Zhao L, Yu G. The dominant glutamic acid metabolic flux to produce gamma-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity[J]. J Integr Plant Biol, 2011, 53 :608-618.
[10] Bouche N, Fait A, Bouchez D, et al. Mitochondrial succinicsemialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. Proc Natl Acad Sci USA, 2003, 100 :6843-6848.
[11] Alcazar R, Cuevas JC, Planas J, et al. Integration of polyamines in the cold acclimation response[J]. Plant Sci, 2011, 180 :31-38.
[12] Cuevas JC, Lopez-Cobollo R, Alcazar R, et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature[J]. Plant Physiol, 2008, 148 :1094-1105.
[13] Alet AI, Sanchez DH, et al. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress[J]. Plant Signal Behavior, 2011, 6 :278-286.
[14] Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant Cell Physiol, 2004, 45 :712-722.
[15] Kumriaa R, Rajam MV. Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress[J]. J Plant Physiol, 2002, 159 :933-990.
[16] Chen TH, Murata N. Glycinebetaine protects plants against abiotic stress :mechanisms and biotechnological applications[J]. Plant, Cell Environ, 2011, 34 :1-20.
[17] Bansal KC, Goel D, Singh AK, et al. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and waterstresses[J]. J Plant Physiol, 2011, 168 :1286-1294.
[18] Park EJ, Jeknic Z, Chen TH, et al. The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato[J]. Plant Biotechnol J, 2007, 5 :422-430.
[19] Hendry GAF. Evolutionary origins and natural functions of fructans: a climatological, biogeography and mechanistic appraisal[J]. New Phytologist, 1993, 123 :3-14.
[20] Livingston DP, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants[J]. Cell Mol Life Sci, 2009, 66:2007-2023.
[21] Kawakami A, Sato Y, Yoshida M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance[J]. J Exp Bot, 2008, 59 :793-802.
[22] Kempa S, Krasensky J, Dal Santo S, et al. A central role of abscisic acid in stress-regulated carbohydrate metabolism[J]. PLoS One, 2008, 3 :e3935.
[23] Kaplan F, Guy CL. beta-Amylase induction and the protective role of maltose during temperature shock[J]. Plant Physiol, 2004, 135 :1674-1684.
[24] Kotting O, Kossmann J, Zeeman SC, et al. Regulation of starch metabolism :the age of enlightenment?[J]. Curr Opin Plant Biol, 2010, 13 :321-329.
[25] Yano R, Nakamura M, Yoneyama T, et al. Starchrelated alphaglucan/ water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis[J]. Plant Physiol, 2005, 138 :837-846.
[26] Valerio C, Costa A, Marri L, et al. Thioredoxin-regulated betaamylase( BAM1)triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress[J]. J Exp Bot, 2011, 62 :545-555.
[27] Paul MJ, Primavesi LF, Jhurreea D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59 :417-441.
[28] Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses[J]. J Integra Plant Biol, 2008, 50 :1223-1229.
[29] Li HW, Zang BS, Deng XW, et al. Overexpression of the trehalose- 6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234 :1007-1018.
[30] Avonce N, Leyman B, Mascorro-Gallardo JO, et al. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling[J]. Plant Physiol, 2004, 136 : 3649-3659.
[31] Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, et al. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiol, 2004, 136 :3148-3158.
[32] Peterbauer T, Richter A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds[J].
Seed Sci Res, 2001, 11 :185-197.
[33] Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage[J].
Plant Physiol, 2008, 147 :1251-1263.
[34] Wang Z, Zhu Y, Wang L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1) promoter[J]. Planta, 2009, 230 :1155-1166.
[35] Zuther E, Buchel K, Hundertmark M, et al. The role of raffinose in the cold acclimation response of Arabidopsis thaliana[J]. FEBS Lett, 2004, 576 :169-173.
[36] Shen B, Jensen RG, Bohnert HJ. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts[J]. Plant Physiol, 1997, 113 :1177-1183.
[37] Stoop JMH, Williamson JD, Pharr MD. Mannitol metabolism in plants: a method for coping with stress[J]. Trend Plant Sci, 1996, 1: 139-144.
[38] Chen XM, Hu L, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol[J]. Tree Physiol, 2005, 25 :1273-1281.
[39] Gao M, Tao R, Miura K, et al. Transformation of Japanese persimmon(Diospyros kaki Thunb.)with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase[J]. Plant Sci, 2001, 160 :837-845.
[40] Sengupta S, Patra B, Ray S, et al. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb.(Tateoka): regulation of pinitol synthesis under abiotic stress[J]. Plant, Cell Environ, 2008, 31 :1442-1459.
[41] Patra B, Ray S, Richter A, et al. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol[J]. Protoplasma, 2010, 245 :143-152.
[42] Lugan R, Niogret MF, Leport L, et al. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte[J]. Plant J, 2010, 64 :215-229.
[43] Kaplan F, Kopka J, Haskell DW, et al. Exploring the temperaturestress metabolome of Arabidopsis[J]. Plant Physiol, 2004, 136 : 4159-4168.
[44] Rizhsky L, Liang HJ, Shuman J, et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiol, 2004, 134 :1683-1696.
[45] Korn M, Gartner T, Erban A, et al. Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition[J]. Mol Plant, 2010, 3 :224-235. |