[1] Wu Y, Wu M, He G, et al. Glyceraldehyde-3-phosphate dehydrogen-ase:a universal internal control for western blots in prokaryotic and eukaryotic cells[J]. Analytical Biochemistry, 2012, 423(1):15-22. [2] Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase:Biochemical mechanisms and regulatory control[J]. Biochimi Biophys Acta, 2011, 1080:741-751. [3] Bertomeu MJ, Mi?ana CB, Mulet MJ, et al. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis[J]. Plant Physiology, 2009, 151:541-558. [4] Bedhomme M, Adamo M, Marchand HC, et al. Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro[J]. Biochemi J, 2012, 445:337-347. [5] Lao YM, Lu Y, Jiang JG, et al. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil[J]. Journal of Agricultural and Food Chemistry, 2012, 60:9211-9220. [6] Rius PS, Casati P, Iglesias AA, et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-Dependent glyceralde-hyde-3-phosphate dehydrogenase[J]. Plant Physiology, 2008, 148:1655-1667. [7] Wawer I, Bucholc M, Astier J, et al. Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity[J]. Biochemical Journal, 2010, 429:73-83. [8] Bertomeu MJ, Mi?ana CB, Alaiz M, et al. A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development[J]. Plant Signaling and Behavior, 2010, 5(1):67-69. [9] Avilan L, Maberly CS, Mekhalf M, et al. Regulation of glyceraldeh-yde-3-phosphate dehydrogenase in the eustigmatophyte Pseudochar-aciopsis ovalis is intermediate between a chlorophyte and a diatom[J]. Eur J Phycol, 2012, 47(3):207-215. [10] Tien YC, Chuankhayan P, Huang YC, et al. Crystal structures of rice(Oryza sativa)glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis[J]. Plant Molecular Biology, 2012, 80:389-403. [11] Erales J, Mekhalfi M, Woudstra M, et al. Molecular mechanism of NADPH-glyceraldehyde-3-phosphate dehydrogenase regulation thr-ough the C-terminus of CP12 in Chlamydomonas reinhardtii[J]. Biochemistry, 2011, 50:2881-2888. [12] Howard TP, Lloyd JC, Raines CA. Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceral-dehyde-3-phosphate dehydrogenase and phosphoribulokinase[J]. J Expe Bot, 2011, 62(11):3799-3805. [13] Valverde F, Ortega JM, Losada M, et al. Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the Microalga scenedesmusvacuolatus[J]. Planta, 2005, 221:937-952. [14] Brocker C, Vasiliou M, Carpenter S, et al. Aldehyde dehydrogenase(ALDH)superfamily in plants:gene nomenclature and compara-tive genomics[J]. Planta, 2013, 237:189-210. [15] Rius PS, Casati P, Iglesias AA, et al. Characterization of an Arabido-psis thaliana mutant lacking a cytosolic non-phosphorylating glyce-raldehydes-3-phosphate dehydrogenase[J]. Plant Molecular Bio-logy, 2006, 61:945-957. [16] Fermani S, Ripamonti A, Sabatino P, et al. Crystal structure of the nonregulatory A4 isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP[J]. Journal of Molecular Biology, 2001, 314:527-542. [17] Hiroyoshi M, Akihiro K, Takayuki M, et al. Structure basis for the regulation of glyceraldehyde-3-phosphate dehydrogenase activity via the intrinsically disordered protein CP12[J]. Structure, 2011, 19:1846-1854. [18] Trost P, Fermani S, Marri L, et al. Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase:autonomous vs. CP12-dependent mechanisms[J]. Photosynthesis Research, 2006, 89:263-275. [19] 王幼宁, 刘梦雨, 李霞.植物3-磷酸甘油醛脱氢酶的多维本质[J].西北植物学报, 2005, 25(3):607-614. [20] 梁颖, 李玉花.植物中磷酸甘油醛-3- 磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J].植物生理学通讯, 2009, 45(10):1027-1032. [21] 齐晓花, 许学文, 罗晶晶, 等.黄瓜3 - 磷酸甘油醛脱氢酶基因CsGAPDH的克隆及其涝胁迫响应分析[J].园艺学报, 2011, 38(9):1693-1698. [22] Zhang XH, Rao XL, Shi HT, et al. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice[J]. Plant Cell Tiss Organ Cult, 2011, 107:1-11. [23] Guo L, Devaiah PS, Narasimhan R, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδto transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. The Plant Cell, 2012, 24:2200-2212. [24] 邹朝霞, 周宏博, 高旭.谷胱甘肽化修饰与氧化还原信号转导[J].生命的化学, 2007, 27(5):410-413. [25] 陈畅, 黄波, 韩佩韦, 等.蛋白质巯基亚硝基化——一种典型氧化还原依赖的蛋白质翻译后修饰[J].生物化学与生物物理进展, 2006, 33(7):609-615. [26] 吴飞华, 肖强, 陈娟, 等.植物中一氧化氮参与的蛋白质翻译后修饰[J].细胞生物学杂志, 2009, 31(2):198-204. [27] Holtgrefe S, Gohlke J, Starmann J, et al. Regulation of plant cyto-solic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications[J]. Physiolo Plant, 2008, 133:211-228. [28] Romero-Puertas CM, Campostrini N, Mattè A, et al. Proteomic ana-lysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response[J]. Proteomics, 2008, 8(7):1459-1469. [29] Morigasaki S, Shimada K, Ikner A, et al. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade[J]. Mol Cell, 2008, 30(1):108-113. [30] Kim SC, Guo L, Wang X. Phosphatidic acid binds tocytosolic glyceraldehyde-3-phosphase dehydrogenase and promotes its cleavage in Arabidopsis[J]. J Biol Chem, 2013, 288(17):11834-11844.
|