生物技术通报 ›› 2013, Vol. 0 ›› Issue (8): 36-42.
方淑梅1, 2, 梁喜龙1, 李春艳2
收稿日期:
2013-03-14
修回日期:
2013-08-11
出版日期:
2013-08-11
发布日期:
2013-09-02
作者简介:
方淑梅,女,硕士,讲师,研究方向:环境微生物学及植物逆境分子生物学教学与科研;E-mail:fangshumei520@126.com
基金资助:
Fang Shumei1, 2, Liang Xilong1, Li Chunyan2
Received:
2013-03-14
Revised:
2013-08-11
Published:
2013-08-11
Online:
2013-09-02
摘要: 由于人类活动而产生的大量氰化合物造成了土壤和水源受到严重污染,这对人类及动植物的生存构成了严重威胁,因此深入探究污染物的处理及污染环境的修复具有重要意义。生物降解具有绿色、高效、成本低等优点,成为污染处理和环境修复发展的方向。氰化合物可作为碳源和氮源被多种微生物利用,产物为低毒或无毒的物质。从氰化合物的来源、微生物降解研究现状、降解机理,影响氰化合物微生物降解的主要因素及微生物降解的应用等角度,综述氰污染微生物修复的研究进展。
方淑梅, 梁喜龙, 李春艳. 氰污染的微生物修复与应用[J]. 生物技术通报, 2013, 0(8): 36-42.
Fang Shumei, Liang Xilong, Li Chunyan. Bioremediation of Cyanide Contamination and Its Applications[J]. Biotechnology Bulletin, 2013, 0(8): 36-42.
[1] Baxter J, Cummings SP. The current and future applications of microorganism in the bioremediation of cyanide contamination[J]. Antonie van Leeuwenhoek, 2006, 90(1):1-17. [2] Figueira MM, Ciminelli VST, Linardi VR. Bacterial degradation of metal cyanide complexes[M]//Jerez CA, Vargas T, Toledo H, et al. Biohydrometallurgical Processing. Santiago, Chile:University of Chile, 1995:333-339. [3] Commeyras A, Taillades J, Collet H, et al. Dynamic co-evolution of peptides and chemical energetics, a gateway to the emergence of homochirality and the catalytic activity of peptides[J]. Orig Life Evol Biosph, 2004, 34(1-2):35-55. [4] Seidelmann K, Weinert H, Ferenz HJ. Wings and legs are producing sites for the desert locust courtship-inhibition pheromone, phenyla-cetonitrile[J]. J Insect Physiol, 2003, 49(12):1125-1133. [5] Mudder TI, Botz MM. Cyanide and society:a critical review[J]. The European Journal of Mineral Processing and Environmental Protection, 2004, 4(1):62-74. [6] Faull JL, Graeme-Cook KA, Pilkington BL. Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum[J]. Phytochemistry, 1994, 36(5):1273-1276. [7] Parker WL, Rathnum ML, Johnson JH, et al. Aerocyanidin, a new antibiotic produced by Chromobacterium violaceum[J]. J Antibiot, 1988, 41(4):454-460. [8] Dutra AJB, Rocha GP, Pombo FR. Copper recovery and cyanide oxi-dation by electrowinning from a spent copper-cyanide electroplating electrolyte[J]. J Hazard Mater, 2008, 152(2):648-655. [9] Xing X, Lan X, Song Y, et al. Disposal advances on “three wastes” treatment in the gold cynidation extraction process[J]. Gold, 2008, 29(12):55-61. [10] Meeussen JCL, Keizer MG, Van Riemsdijk WH, et al. Dissolution behavior of iron cyanide(prussian blue)in contaminated soils[J]. Environ Sci Technol, 1992, 26(9):1832-1838. [11] Akcil A. Destruction of cyanide in gold mill effluents:biological versus chemical treatments[J]. Biotechnol Adv, 2003, 21(6):501-511. [12] Soldán P, Pavoni? M, Bou?ek J, et al. Baia Mare accident-brief ecotoxicological report of Czech experts[J]. Ecotox Environ Safety, 2001, 49(3):255-261. [13] Fava L, Orrù MA, Crobe A, et al. Pesticide metabolites as contaminants of groundwater resources:assessment of the leaching potential of endosulfan sulfate, 2, 6-dichlorobenzoic acid, 3, 4-dichlor-oaniline, 2, 4-dichlorophenol and 4-chloro-2-methylphenol[J]. Microchem J, 2005, 79(1-2):207-211. [14] Cessna AJ, Elliott JA, Tollefson L, et al. Herbicide and nutrient transport from an irrigation district into the South Saskatchewan river[J]. J Environ Qual, 2001, 30(5):1796-1807. [15] Thomas KV, McHugh M, Hilton M, et al. Increased persistence of antifouling paint biocides when associated with paint particles[J]. Environ Poll, 2003, 123(1):153-161. [16] Sakkas VA, Lambropoulou DA, Albanis TA. Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances[J]. Chemosphere, 2002, 48(9):939-945. [17] Dorr PK, Knowles CJ. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764[J]. FEMS Microbiol Lett, 1989, 60(3):289-294. [18] Watanabe A, Yano K, Ikebukuro K, et al. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudo monas stutzeri AK61, by cyanidase[J]. Microbiology, 1998, 144(6):1677-1682. [19] Ingvorsen K, Hojerpedersen B, Godtfredsen SE. Novel cyanide-hydrolysing enzyme from Alcaligenes xylosoxidans subsp. denitrifi-cans[J]. Appl Environ Microbiol, 1991, 57:1783-1789. [20] Meyers PR, Gokool P, Rawlings DE, et al. An efficient cyanide-degrading Bacillus pumilus strain[J]. Microbiology, 1991, 137(6):1397-1400. [21] Kao CM, Liu JK, Lou HR, et al. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca[J]. Chemosphere, 2003, 50(8):1055-1061. [22] Naveen D, Majumder CB, Mondal P, et al. Biological treatment of cyanide containing wastewater[J]. Res J Chem Sci, 2011, 1(7):15-21. [23] Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater[J]. Chemosphere, 2008, 71(1):133-139. [24] Martínková L, Vejvoda V, Kaplan O, et al. Fungal nitrilases as biocatalysts:Recent developments[J]. Biotechnol Adv, 2009, 27(6):661-670. [25] Ezzi MI, Lynch JM. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp.[J]. Enz Microb Technol, 2005, 36(7):849-854. [26] Cabuk A, Unal AT, Kolankaya N. Biodegradation of cyanide by a white rot fungus, Trametes versicolor[J]. Biotechnol Lett, 2006, 28(16):1313-1317. [27] Shpak VE, Podolskaya VI, Ulberg ZR, et al. Degradation of metal-cyanide complexes in microbe dispersions[J]. Coll J, 1995, 57(1):102-105. [28] Adjei MD, Ohta Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3[J]. J Biosci Bioengineer, 2000, 89(3):274-277. [29] Luque-Almagro VM, Huertas MJ, Martínez-Luque M, et al. Bacterial degradation of cyanide and its metal complexes under alkaline conditions[J]. Appl Environ Microbiol, 2005, 71(2):940-947. [30] Finnegan I, Toerien S, Abbot L, et al. Identification and characterisation of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions and simple organic nitriles[J]. Appl Microbiol Biotechnol, 1991, 36(1):142-144. [31] Kunz DA, Fernandez RF, Parab P. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase[J]. Biochem Biophys Res Comm, 2001, 287(2):514-518. [32] Seung-Mok L, Diwakar T. Application of ferrate(VI)in the treatment of industrial wastes containing metal-complexed cyanides:A green treatment[J]. J Environ Sci, 2009, 21(10):1347-1352. [33] Barclay M, Day JC, Thompson IP, et al. Substrate-regulated cyanide hydratase(chy)gene expression in Fusarium solani:the potential of a transcription-based assay for monitoring the biotransformation of cyanide complexes[J]. Environ Microbiol, 2002, 4(3):183-189. [34] Dash RR, Gaurb A, Balomajumder C. Cyanide in industrial wastewaters and its removal:A review on biotreatment[J]. J Hazard Mater, 2009, 163(1):1-11. [35] Chelme-Ayala P, El-Din MG, Smith DW. Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation[J]. Chemosphere, 2010, 78(5):557-562. [36] Nigam VK, Khandelwal AK, Gothwal RK, et al. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.[J]. J Biosci, 2009, 34(1):21-26. [37] Santoshkumar M, Veeranagouda Y, Lee K, et al. Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples[J]. Int Biodeterior Biodegrad, 2011, 65(1):153-159. [38] Alfani F, Cantarella M, Spera A. et al. Operational stability of Brevibacterium imperialis CBS 489-74 nitrile hydratase[J]. J Mol Cat B:Enz, 2001, 11(4-6):687-697. [39] Komeda H, Kobayashi M, Shimizu S. Characterization of the gene cluster of high-molecular-mass nitrile hydratase(H-NHase)induced by its reaction product in Rhodococcus rhodochrous Jl[J]. Proc Natl Acad Sci USA, 1996, 93(9):4267-4272. [40] Cramp R, Gilmour M, Cowan DA. Novel thermophilic bacteria producing nitrile-degrading enzymes[J]. Microbiology, 1997, 143(7):2313-2320. [41] Asano Y, Fujishiro K, Tani Y, et al. Aliphatic nitrile hydratase from Arthrobacter sp. J1- purification and characterization[J]. Agric Biol Chem, 1982, 46(5):1165-1174. [42] Bhalla TC, Kumar H. Nocardia globerula NHB-2:a versatile nitrile-degrading organism[J]. Can J Microbiol, 2005, 51(8):705-708. [43] Collins PA, Knowles CJ. The utilization of nitriles and amides by Nocardia rhodochrous[J]. Microbiology, 1983, 129(3):711-718. [44] Vejvoda V, Kubá? D, Davidová A, et al. Purification and characte-rization of nitrilase from Fusarium solani IMI196840[J]. Process Biochemistry, 2010, 45(7):1115-1120. [45] Ebbs S. Biological degradation of cyanide compounds[J]. Curr Opin Biotech, 2004, 15(3):231-236. [46] Gupta N, Balomajumder C, Agarwal VK. Enzymatic mechanism and biochemistry for cyanide degradation:A review[J]. J Hazard Mater, 2010, 176(1-3):1-13. [47] Kobayashi M, Shimizu S. Versatile nitrilases:nitrile-hydrolysing enzymes[J]. FEMS Microbiol Lett, 1994, 120(3):217-224. [48] Kobayashi M, Shimizu S. Nitrile hydrolases[J]. Curr Opin Chem Biol, 2000, 4(1):95-102. [49] Kobayashi M, Fujiwara Y, Goda M, et al. Identification of active sites in amidase:Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes[J]. Proc Natl Acad Sci USA, 1997, 94(22):11986-11991. [50] O’Reilly C, Turner PD. The nitrilase family of CN hydrolysing enzymes-a comparative study[J]. J Appl Microbiol, 2003, 95(6):1161-1174. [51] Kao CM, Chen KF, Liu JK, et al. Enzymatic degradation of nitriles by Klebsiella oxytoca[J]. Appl Microbiol Biotechnol, 2006, 71(2):228-233. [52] Liu JK, Liu CH, Lin CS. The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain[J]. Proc Natl Sci Counc Repub China, 1997, 21(2):37-42. [53] Van Lanen SG, Reader JS, Swairjo MA, et al. From cyclohydrolase to oxidoreductase:Discovery of nitrile reductase activity in a common fold[J]. PNAS, 2005, 102(12):4264-4269. [54] Wilding B, Winkler M, Petschacher B, et al. Nitrile reductase from Geobacillus kaustophilus:A potential catalyst for a new nitrile biotransformation reaction[J]. Adv Synth Catal, 2012, 354(11-12):2191-2198. [55] Dash RR, Gaur A, Balomajumder C. Cyanide in industrial waste waters and its removal:A review on biotreatment[J]. J Hazard Mater, 2009, 163(1):1-11. [56] Akcil A, Karahan AG, Ciftci H, et al. Biological treatment of cyanide by natural isolated bacteria(Pseudomonas sp.)[J]. Miner Eng, 2003, 16(7):643-649. [57] Ferguson AS, Doherty R, Larkin MJ, et al. Toxicity assessment of a former manufacture gas plant[J]. Bull Environ Cont Toxicol, 2003, 71(1):21-30. [58] Huertasa MJ, Sáez LP, Roldán MD, et al. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH[J]. J Hazard Mater, 2010, 179(1-3):72-78. [59] Gurbuz F, Ciftci H, Akcil A, et al. Biodegradation of cyanide containing effluents by Scenedesmus obliquus[J]. J Hazard Mater, 2009, 162(1):74-79. [60] Adjei MD, Ohta Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3[J]. J Biosci Bioeng, 2000, 89(3):274-277. [61] Dash RR, Balomajumder C, Kumar A. Treatment of metal cyanide bearing wastewater by simultaneous adsorption biodegradation(SAB)[J]. J Hazard Mater, 2008, 152(1):387-396. [62] Manolov T, Kristina H, Benoit G. Continuous acetonitrile degrada-tion in a packed-bed bioreactor[J]. Appl Microbiol Biotechnol, 2005, 66(5):567-574. [63] Li C, Li Y, Cheng X, et al. Immobilization of Rhodococcus rhodochrous BX2(an acetonitrile-degrading bacterium)with biofilm-forming bacteria for wastewater treatment[J]. Bioresour Technol, 2013, 131:390-396. |
[1] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[2] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[3] | 陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258. |
[4] | 王梦婷, 曹杰宇, 王忠新, 王雅瑜, 杨大佐, 周一兵, 赵欢. MicroRNA参与水生动物环境污染物胁迫应答的研究进展[J]. 生物技术通报, 2021, 37(6): 272-278. |
[5] | 朱淑芳, EHENEDEN Iyobosa, 宁海军, 尚洁昊, 李武阳, 孟宪刚. 高效原油污染降解菌的筛选、鉴定及菌群的构建[J]. 生物技术通报, 2021, 37(4): 107-115. |
[6] | 黄玉喜, 程顺利, 赫玲玲, 肖进彬, 任秋鹤, 彭子涵, 周振, 方玉美. 两株微生物的Cr(VI)还原特性研究[J]. 生物技术通报, 2021, 37(10): 63-71. |
[7] | 杨宗政, 赵晓宇, 刘丹, 许文帅, 吴志国. Microbacterium sp. BD6在Cr(VI)污染农田土壤修复中的应用研究[J]. 生物技术通报, 2021, 37(10): 81-90. |
[8] | 张小红, 陶红, 王亚娟, 李一春, 张锐. 固定化微球降解土壤中PAEs效果及影响因素[J]. 生物技术通报, 2021, 37(1): 223-233. |
[9] | 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. |
[10] | 张靖洁, 刘珅坤, 唐涛, 葛保胜, 李润植, 崔红利. 微藻源生物刺激剂的制备及在设施农业中的应用[J]. 生物技术通报, 2020, 36(4): 164-174. |
[11] | 许又分, 李宗, 刘如铟, 余志晟, 张洪勋, 何炜, 李烨. 水环境微生物溯源技术的研究和应用进展[J]. 生物技术通报, 2019, 35(9): 35-44. |
[12] | 韩姝然, 卢磊. 交联酶聚集体的制备及在漆酶固定化中的应用进展[J]. 生物技术通报, 2019, 35(3): 164-170. |
[13] | 袁金玮, 陈笈, 陈芳, 刘万宏. 强化植物修复重金属污染土壤的策略及其机制[J]. 生物技术通报, 2019, 35(1): 120-130. |
[14] | 田晶, 徐小琳, 康彦顺, 汤伟华, 刘思琪. 广谱性多环芳烃降解真菌Aspergillus flavus AD-X-1的筛选及其性能研究[J]. 生物技术通报, 2018, 34(8): 115-122. |
[15] | 望子龙 ,罗学刚 ,司慧 ,王焯. 锰、砷对地衣芽孢杆菌铀富集的影响[J]. 生物技术通报, 2018, 34(6): 164-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||