生物技术通报 ›› 2014, Vol. 0 ›› Issue (11): 7-13.
吕淑芳1,2,江静1
收稿日期:
2014-03-27
出版日期:
2014-11-07
发布日期:
2014-11-07
作者简介:
吕淑芳,女,讲师,硕士研究生,研究方向:植物学与分子生物学
基金资助:
Lü Shufang1,2,Jiang Jing1
Received:
2014-03-27
Published:
2014-11-07
Online:
2014-11-07
摘要: 1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)合酶(ACC synthase,ACS)是乙烯生物合成的限速酶。ACS酶活性是ACC和乙烯调控植物生长发育的基础,其酶活性调节主要涉及转录启动、翻译后修饰、酶高级结构形成、生化特性等方面。简要总结拟南芥ACS酶活性研究进展。
吕淑芳,江静. 拟南芥乙烯合成酶ACS基因家族研究进展[J]. 生物技术通报, 2014, 0(11): 7-13.
Lü Shufang,Jiang Jing. Review of Arabidopsis 1-Aminocyclopropane-1-Carboxylic Acid Synthases[J]. Biotechnology Bulletin, 2014, 0(11): 7-13.
[1]Hidenori T, Takahiro I, Tetsuhito S, et al. Isolation and characteriza-tion of the ACC synthase genes from lettuce and the involvement in low pH-induced root hair initiation[J]. Plant Cell Physiol, 2003, 44(1):62-69. [2]Yuri T, José RB. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple[J]. J Exp Bot, 2006, 57(14):3953-3960. [3]Salman MA, Levi A, Wolf S, et al. ACC synthase genes are polymorphic in watermelon and differentially expressed in flowers and in response to auxin and gibberellin[J]. Plant Cell Physiol, 2008, 49(5):740-750. [4]Mu?oz-robredo P, Rubiob P, Infanteb R, et al. Ethylene biosynthesis in apricot:Identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase(ACS)gene[J]. Postharvest Biol Technol, 2012, 63(1):85-90. [5]Akira N, Shinjiro S, Yasutaka K, et al. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit[J]. Plant Cell Physiol, 1997, 38(10):1103-1110. [6] Yoon GM, Kieber JJ. 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants[J]. Aob Plants, 2013, 5:plt017. [7] Xia LS, Keller JA, Shen NF. The 1-aminocyclopropane-1 -carboxylate synthase gene family of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1992, 89(22):11046-11050. [8]Wang A, Li T, Harada T. The regulation of 1-aminocyclopropan-1- carboxylate synthase genes on fruit shelf life of apple[J]. Eur J Hortic Sci, 2011, 76(8):77-83. [9]Wang NN, Shih MC, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes ACS4, ACS5, and ACS7 induced by hormones and stresses[J]. J Exp Bot, 2005, 56(3):909-920. [10] Wi SJ, Park KY. Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants[J]. Mol Cells, 2002, 13(2):209-220. [11] Young TE, Meeley RB, Gallie DR. ACC synthase expression regulates leaf performance and drought tolerance in maize[J]. Plant J, 2004, 40(2):813-825. [12] Lin ZF, Zhong S, Dong G. Recent advances in ethylene research[J]. J Exp Bot, 2009, 60:3311-3336. [13]Zeinolabedin J. Ethylene Biosynthesis[J]. Tech J Engin & App Sci, 2012, 1(4):107-110. [14] Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosyn-thesis[J]. J Plant Growth Regul, 2007, 26(2):92-105. [15] Boller T, Herner R, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid[J]. Planta, 1979, 145(3):293-303. [16] Johnson PR, Ecker JR. The ethylene gas signal transduction pathway:a molecular perspective[J]. Annu Rev Genet, 1998, 32:227-254. [17] Ge L, Liu J, Wong W, et al. Identification of a novel multiple envi-ronmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco[J]. Plant Cell Environ, 2000, 23(11):1169-1182. [18] Shi HY, Zhang YX, Chen L. Cloning, characterization and expres-sion analysis of a 1-aminocyclopropane-1-carboxylate synthase gene from pear[J]. Can J Plant Sci, 2013, 93(3):465-471. [19] Yamagami T, Tsuchisaka A, Yamada K, et al. Biochemical diversity among the 1-amino-cyclopropane-1- carboxylate synthase isozymes encoded by the Arabidopsis gene family[J]. J Bio Chem, 2003, 278(49):49102-49112. [20]Liang XW, Abel S, Keller JA, et al. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1992, 89(22):11046-11050. [21]Tsuchisaka A, Theologis A. Heterodimeric interactions among the 1-amino-cyclopropane- 1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family[J]. Proc Natl Acad Sci USA, 2004, 101(8):2275-2280. [22]Yoshida H, Nagata M, Saito K, et al. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane- 1-carboxylate synthases[J]. BMC Plant Biol, 2005, 5:14-20. [23]Wang KL, Yoshid AH, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950. [24]Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid[J]. Plant J, 2009, 57(4):606-614. [25]Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overpro-duce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane -1-carboxylic acid synthase[J]. Plant Physiol, 1999, 119(2):521-530. [26] Vogel JP, Woeste KE, Theologis A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respec-tively[J]. Proc Natl Acad Sci USA, 1998, 95:4766-4771. [27] Zhang TC, Qiao Q, Zhong Y. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase(ACS)gene family[J]. Comput Biol Chem, 2012, 38:10-16. [28]Choudhury S, Roy S, Sengupta D. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme[J]. Plant Signal Behav, 2013, 8:e23000. [29]Tsuchisaka A, Yu G, Jin H, et al. A combinatorial interplay among the 1-aminocyclopropane- 1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana[J]. Genetics, 2009, 183(3):979-1003. [30]Liang X, Oono Y, Shen NF, et al. Characterization of two members(ACS1 and ACS3)of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Gene, 1995, 167(1-2):17-24. [31]Toufighi K, Brady SM, Austin R, et al. The botany array resource:e-northerns, expression angling, and promoter analyses[J]. Plant J, 2005, 43(1):153-163. [32]Tsuchisaka A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members[J]. Plant Physiol, 2004, 136(2):2982-3000. [33]Joo S, Seo YS, Kim SM, et al. Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings[J]. Physiologia Plantarum, 2006, 126(4):592-604. [34] Tang X, Chang L, Wu S, et al. Auto-regulation of the promoter acti-vities of Arabidopsis 1-aminocyclopropane-1-carboxylate synthase genes ACS4, ACS5, and ACS7 in response to different plant hormo-nes[J]. Plant Sci, 2008, 175(1-2):161-167. [35] Simon CT, Filip V, Lucas JJ, et al. Circadian rhythms of ethylene emission in Arabidopsis[J]. Plant Physiol, 2004, 136(11):3751-3761. [36] Peng HP, Lin TY, Wang NN, et al. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia[J]. Plant Mol Biol, 2005, 58(1):15-25. [37] Jose MA, Takashi H, Gregg R, et al. EIN2, a bifunctional transdu-cer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284(5423):2148-2152. [38] Li G, Meng X, Wang R, et al. Dual-level regulation of acc synthase activity by mpk3/mpk6 cascade and its downstream wrky transcrip-tion factor during ethylene induction in Arabidopsis[J]. PLoS Genet, 2012, 8(6):e1002767. [39] Chae HS, Faure F, Kieber J. The eto1, eto2 and eto3 mutations and cytokinin treatment crease ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15:1-15. [40] Yip WK, Dong JG, Kenny JW, et al. Characterization and sequen-cing of the active site of 1-aminocyclopropane-1-carboxylate synth-ase[J]. Proc Natl Acad Sci USA, 1990, 87:7930-7934. [41] Bleecker AB, Kendeh. Ethylene:a gaseous signal molecule in plants[J]. Annu Rev Cell Dev Biol, 2000, 16(1):1-18. [42]Grosskopf DG, Felix G, Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro[J]. FEBS Lett, 1990, 275(1-2):177-180. [43]Felix G, Grosskopf DG, Regenass M, et al. Elicitor-induced ethylene biosynthesis in tomato cells characterization and use as a bioassay for elicitor action[J]. Plant Physiol, 1991, 97(1):19-25. [44]Sunjoo J, Liu YD, Abraham L, et al. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway[J]. Plant J, 2008, 54(1):129-140. [45]Han L, Li GJ, Yang KY, et al. Mitogen-activated protein kinase 3 and 6 regulate botrytis cinerea-induced ethylene production in Arabidopsis[J]. Plant J, 2010, 64(1):114-127. [46]Delaure SL, van Hemelrijck W, De Bolle MFC, et al. Building up plant defenses by breaking down proteins[J]. Plant Sci, 2008, 174(4):375-385. [47]Wang KL, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950. [48]Chae HS, Faure FKieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15(2):545-559. [49]Spanu P, Grosskopf DG, Felix G, et al. The apparent turnover of 1-aminocyclopropane-1 -carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation[J]. Plant Physiol, 1994, 106(2):529-535. [50]Prasad ME, Schofield A, Lyzenga M, et al. Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis[J]. Plant Physiol, 2010, 153:1587-1596. [51]Wendy J, Lyzenga M, Judith K, et al. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7[J]. Plant J, 2012, 71(1):23-34. [52]Prasad ME, Stone SL. Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis[J]. Plant Signal Behav, 2010, 5(11):1425-1429. [53]Chang IF, Curran A, Woolsey R, et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana[J]. Proteomics, 2009, 9(11):2967- 2985. [54]Huang SJ, Chang CL, Wang PH, et al. A typeIII ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana[J]. J Exp Bot, 2013, 14(64):4343-4360. [55]Yao Y, Du Y, Jiang L, et al. Interaction between ACC synthase 1 and 14-3-3 proteins in rice:a new insight[J]. Biochemistry(Moscow), 2007, 72(9):1003-1007. [56]Skottke KR, Yoon GM, Kieber JJ. Delong a protein phosphatase 2a controls ethylene biosynthesis by differentially regulating the turnover of acc synthase isoforms[J]. PLoS Genet, 2011, 7(4):e1001370. [57]Tatsuki M. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region[J]. J Biol Chem, 2001, 276(30):28051-28057. [58] McManus MT. The plant hormone ethylene[M]. New York:John Wiley Sons, 2012. [59] Kende H. Ethylene biosynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44(1):283-307. [60] Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that over-produce ethylene are affected in the post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase[J]. Plant Physiol, 1999, 119(29):521-529. [61] Varanasi V, Shin S, Mattheis J, et al. Expression profiles of the Md-ACS3 gene suggest a function as an accelerator of apple(Malus×domestica)fruit ripening[J]. Postharvest Biol Technol, 2011, 62(2):141-148. [62] Mark LT, Xue P, Yang RH. 1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J]. J Exp Bot, 2010, 61: 463-472. [63] Tan DM, Li TZ, Wang AD. Apple 1-aminocyclopropane-1-carboxy-lic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis[J]. Plant Mol Biol Rep, 2013, 31(1):204-209. [64] Shi HY, Zhang YX, Sun W. Molecular characterization of pear 1-aminocyclopropane-1-carboxylate synthase gene preferentially expressed in leaves[J]. J Agr Sci, 2012, 4(6):72-79. [65] Wang KL, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arbidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950. |
[1] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[2] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[3] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[4] | 王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186. |
[5] | 高超, 郝孔利, 赵宇婷, 毛樱翔, 池明眼, 张杰. 一株能够降解聚乙烯的霍氏肠杆菌的鉴定及分析[J]. 生物技术通报, 2020, 36(10): 99-104. |
[6] | 刘亚兰, 段梦洁, 林晓珊, 张毅. 聚乙烯醇降解细菌筛选及其降解特性[J]. 生物技术通报, 2019, 35(6): 91-98. |
[7] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[8] | 王竹承, 刘辉, 李荣华, 陈新, 李欣, 路致远. 外源硫与乙烯缓解马齿苋镉胁迫的生理机制研究[J]. 生物技术通报, 2019, 35(10): 71-79. |
[9] | 窦悦, 刘美彤, 卢安娜, 吴佳洁, 王群青, 胥倩. 中介体亚基MED25调控植物激素信号转导的研究进展[J]. 生物技术通报, 2018, 34(7): 40-47. |
[10] | 欧阳婧,孙园园,唐泽民,唐政山,李放军,杨寅柯. 慢病毒介导沉默PD-L1基因在乳腺癌细胞中的表达[J]. 生物技术通报, 2017, 33(9): 259-266. |
[11] | 李三和, 闸雯俊, 陈志军, 周雷, 刘凯, 游艾青,. 水稻Bph14基因生理功能初探[J]. 生物技术通报, 2017, 33(12): 93-98. |
[12] | 位明明,李维国,高新生,黄肖. 巴西橡胶树响应乙烯利刺激的生理及其分子调控机制研究进展[J]. 生物技术通报, 2016, 32(3): 1-11. |
[13] | 郑井元,刘峰,朱春晖. 辣椒乙烯转录因子CaERF18的分离与诱导表达[J]. 生物技术通报, 2016, 32(3): 87-92. |
[14] | 孙梦婷, 范晓蕾, 郭荣波, 邱艳玲, 赵晓娴. 生物乙烯研究进展[J]. 生物技术通报, 2016, 32(2): 38-45. |
[15] | 赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||