[1] 贾莹莹, 杜平, 杜风光, 等.生物乙烯的发展状况及展望[J].当代化工, 2011, 40(10):1071-1072. [2] Haro P, Ollero P, Trippe F.Technoeconomic assessment of potential processes for bio-ethylene production[J].Fuel Processing Technology, 2013, 114(4):35-48. [3] Hu YC, Zhan NN, Dou C, et al.Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5 Influence of the fusel[J].Biotechnology Journal, 2010, 5(11):1186-1191. [4] 孙芝兰, 陈以峰.乙烯的直接生物合成[J].生物工程学报, 2013, 29(10):1431-1440. [5] 胡燚, 李慧, 黄和, 等.生物乙烯开发进展与产业化[J].现代化工, 2009, 29(1):6-9. [6] Eckert C, Wu X, Wei X, et al.Ethylene-forming enzyme and bioethylene production[J].Biotechnol Biofuels, 2014, 7(1):33. [7] Fan D, Dai DJ, Wu HS.Ethylene formation by catalytic dehydration of ethanol with industrial considerations[J].Materials, 2013, 6(1):101-115. [8] 杜平, 贾莹莹, 孙沛勇, 等.纤维乙醇制生物乙烯前景展望[J].广东化工, 2013, 9(40):78-79. [9] 胡铁刚, 程可可, 张建安, 等.生物乙醇催化制备乙烯的研究进展[J].现代化工, 2007(Z):96-99. [10] Schlink K.Gene expression profiling in wounded and systemic leaves of Fagus sylvatica reveals up-regulation of ethylene and jasmonic acid signaling[J].Plant Biology, 2011, 13(3):445-452. [11] Li Q, Csanády GA, Kessler W, et al.Kinetics of ethylene and ethylene oxide in subcellular fractions of lungs and livers of male B6C3F1 mice and male fischer 344 rats and of human livers[J].Toxicol Ogical Science, 2011, 123(2):384-398. [12] Lin ZF, Zhong SL, Grierson D.Recent advances in ethylene research[J].Journal of Experimental Botany, 2009, 60(12):3311-3336. [13] 陈建新, 刘国顺, 陈占宽, 等.乙烯生物合成途径及其相关基因工程的研究进展[J].热带亚热带植物学报, 2002, 10(1):83-98. [14] 刘进平.乙烯生物合成关键酶基因研究进展[J].热带农业科学, 2013, 33(1):51-57. [15] 陈银华, 黄伟, 王海.ACC氧化酶基因研究进展[J].海南大学学报:自然科学版, 2006, 24(2):194-200. [16] Hamilton AJ, Bouzayen M, Grierson D.Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J].Plant Biology, 1991, 88(8):7434-7437. [17] Chen YF, Gao ZY, Kerris RJ, et al.Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis[J].PLoS One, 2010, 5(1):e8640. [18] Qadir A, Hewett EW, Long PG, et al.A non-ACC pathway for ethylene biosynthesis in Botrytis cinerea[J].Postharvest Biology and Technology, 2011, 62(3):314-318. [19] Young RE, Pratt HK, Biale JB, et al.Identification of ethylene as a volatile product of the fungus Penicillium digitatum[J].Plant Physiology, 1951, 26(7):304-310. [20] Biale JB.Effect of emanations from several species of fungi on respiration and color development of citrus fruits[J].Science, 1940, 91(2367):458-459. [21] Nagahama K, Ogawa T, Fujii T, et al.Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv.phaseolicola PK2[J].Journal of General Microbiology, 1991, 10(137):2281-2286. [22] Nagahama K, Yoshino K, Matsuoka M, et al.Site-directed mutagenesis of histidine residues in the ethylene-forming enzyme from Pseudomonas syringae[J].Journal of Fermentation Bioengineering, 1998, 85(3):255-258. [23] Sato M, Watanabe K, Yazawa M, et al.Detection of new ethylene-producing bacteria, Pseudomonas syringae pvs.cannabina and sesami, by PCR amplification of genes for the ethylene-forming enzyme[J].Bacteriology, 1997, 87(12):1192-1196. [24] Zhang C, Wei ZH, Ye BC.Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor[J].Appl Microbiol Biotechnol, 2013, 97(7):8307-8316. [25] Larsson C, Snoep JL, Norbeck J, et al.Flux balance analysis for ethylene formation in genetically engineered saccharomyces cerevisiae[J].IET Systems Biology, 2011, 5(4):245-251. [26] Ishihara K, Matsuoka M, Ogawa T, et al.Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida[J].Journal of Fermentation Bioengineering, 1996, 82(5):509-511. [27] Wang Jp, Wu Lx, Xu F, et al.Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene(efe)at the 16S rDNA sites of Pseudomonas putida KT2440[J].Bioresource Technology, 2010, 101(3):6404-6409. [28] Pirkov I, Albers E, Norbeck J, et al.Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae[J].Metabolic Engineering, 2008, 10(5):276-280. [29] Johansson N, Quehl P, Norbeck J, et al.Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae[J].Microbial Cell Factories, 2013, 12(1):89. [30] Johansson N, Persson KO, Quehl P, et al.Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae[J].FEMS Yeast Research, 2014, 14(7):1110-1118. [31] Tao L, Dong HJ, Chen X, et al.Expression of ethylene-forming enzyme(EFE)of Pseudomonas syringae pv.glycinea in Trichoderma viride[J].Appl Microbiol Biotechnol, 2008, 80(4):573-578. [32] Chen SF, Qin WS, Chen X, et al.Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene[J].International Journal of Biological Sciences, 2010, 6(1):96-106. [33] Sakai M, Ogawa T, Matsuoka M, et al.Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp.PCC 7942 which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae[J].J Ferment Bioeng, 1997, 84(5):434-443. [34] Takahama K, Matsuoka M, Nagahama K, et al.Construction and analysis of a recombinant Cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus[J].Journal of Bioscience and Bioengineering, 2003, 95(3):302-305. [35] Ungerer J, Tao L, Davis M, et al.Sustained photosynthetic conversion of CO2 to ethylene in recombinant Cyanobacterium Synechocystis 6803[J].Energy & Environmental Science, 2012, 5(10):8998-9006. [36] Zhu T, Xie XM, Li ZM, et al.Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp.PCC 6803[J].Green Chemistry, 2015, 17(1):421-434. [37] 赵光辉, 李景燕, 李小军, 等.炼厂干气中乙烯的分离技术及综合利用[J].化工中间体, 2008, 1(3):25-29. |