[1] Saxe Jonathan P, Lin HF. Small noncoding RNAs in the germline [J]. Cold Spring Harbor Perspectives in Biology, 2011, 3:a002717. [2] Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells[J]. Nature, 2005, 434(7033):583-589. [3] Papaioannou MD, Nef S. microRNAs in the testis:building up male fertility[J]. Journal of Andrology, 2010, 31(1):26-33. [4] Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells[J]. Reproduction, 2011, 142(2):195-209. [5] Balakirev ES, Ayala FJ. Pseudogenes:are they “junk” or functional DNA?[J]Annu Rev Genet, 2003, 37:123-151. [6]Holley RW, Apgar J, Zamir A. Structure of a ribonucleic acid[J]. Science, 1965, 147(3664):1462-1465. [7]Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Res, 2012, 40(14):6391-6400. [8]Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2):358-369. [9]罗立凡. 猪性成熟前后睾丸组织差异表达miRNA鉴定及功能分析[D]. 武汉:华中农业大学, 2010:1-9. [10] Watanabe T, Chuma S, Yamamoto Y, et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline[J]. Developmental Cell, 2011, 20(3):364-375. [11] Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. [J]. Nature Structural and Molecular Biology, 2010, 17(10):1169-1174. [12] Friedman RC, Farh KKH, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Research, 2009, 19(1):92-105. [13]Bj?rk JK, Sandqvist A, Elsing AN, et al. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J]. Development, 2010, 137(19):3177-3184. [14]Shomron N, Levy C. MicroRNA-biogenesis and Pre-mRNA splicing crosstalk[J]. Biomed Research International, 2009, 2009:594678. [15] Yokota S. Historical survey on chromatoid body research[J]. Acta Histochem Cytoc, 2008, 41:65-82. [16] McIver SC, Roman SD, Nixon B, et al. miRNA and mammalian male germ cells[J]. Human Reproduction Update, 2012, 18(1):44-59. [17] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals [J]. Nature Reviews Molecular Cell Biology, 2009, 10(2):126-139. [18] Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science, 2004, 305(5689):1437-1441. [19]Wakiyama M, Takimoto K, Ohara O, et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system[J]. Genes & Development, 2007, 21(15):1857-1862. [20]Kiriakidou M, Tan GS, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation[J]. Cell, 2007, 129(6):1141-1151. [21]Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6[J]. Nature, 2007, 447(7146):823-828. [22]Maatouk DM, Loveland KL, McManus MT, et al. Dicer1 is required for differentiation of the mouse male germline[J]. Biology of Reproduction, 2008, 79(4):696-703. [23]Romero Y, Meikar O, Papaioannou MD, et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects[J]. PLoS One, 2011, 6(10):e25241. [24]Wu Q, Song R, Ortogero N, et al. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis[J]. Journal of Biological Chemistry, 2012, 287(30):25173-25190. [25]Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2(Tnp2)messenger RNA(mRNA)by mRNA cleavage[J]. Biology of Reproduction, 2005, 73(3):427-433. [26]Ro S, Park C, Sanders KM, et al. Cloning and expression profiling of testis-expressed microRNAs[J]. Developmental Biology, 2007, 311(2):592-602. [27]Yan N, Lu Y, Sun H, et al. A microarray for microRNA profiling in mouse testis tissues[J]. Reproduction, 2007, 134(1):73-79. [28]Smorag L, Zheng Y, Nolte J, et al. MicroRNA signature in various cell types of mouse spermatogenesis:Evidence for stage-specifi- cally expressed miRNA-221, -203 and-34b-5p mediated spermato-genesis regulation[J]. Biology of the Cell, 2012, 104(11):677-692. [29]Bao J, Li D, Wang L, et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein(E2F-pRb)pathway[J]. Journal of Biological Chemistry, 2012, 287(26):21686-21698. [30]Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs[J]. Development, 2008, 135(1):3-9. [31]Chuma S, Nakano T. piRNA and spermatogenesis in mice[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1609):20110338. [32]Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race[J]. Science, 2007, 318(5851):761-764. [33]张颖. 鸡piRNAs的克隆, 表达及体外抑制Piwi基因表达的研究[D]. 扬州:扬州大学, 2012:2-3. [34] Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins[J]. Nature, 2006, 442(7099):199-202. [35] Kuramochi-Miyagawa S, Watanabe T, Gotoh K, et al. MVH in piRNA processing and gene silencing of retrotransposons[J]. Genes & Development, 2010, 24(9):887-892. [36] Reuter M, Chuma S, Tanaka T, et al. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile[J]. Nature Structural & Molecular Biology, 2009, 16(6):639-646. [37] Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice[J]. Development, Growth & Differentiation, 2012, 54(1):78-92. [38]Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes[J]. Nature, 2006, 442 (7099):203-207. [39]Aravin AA, Sachidanandam R, Bourc’his D, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice[J]. Molecular Cell, 2008, 31(6):785-799. [40]Reuter M, Berninger P, Chuma S, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing [J]. Nature, 2011, 480(7376):264-267. [41]Li XZ, Roy CK, Dong X, et al. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes[J]. Molecular Cell, 2013, 50(1):67-81. [42]Siomi MC, Sato K, Pezic D, et al. PIWI-interacting small RNAs:the vanguard of genome defence[J]. Nature reviews Molecular Cell Biology, 2011, 12(4):246-258. [43]Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs:new insights into biogenesis and function inside and outside of germlines[J]. Genes & Development, 2012, 26(21):2361-2373. [44]Luteijn MJ, Ketting RF. PIWI-interacting RNAs:from generation to transgenerational epigenetics[J]. Nature Reviews Genetics, 2013, 14(8):523-534. [45]Beyret E, Liu N, Lin H. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism[J]. Cell Research, 2012, 22(10):1429-1439. [46]Liu T, Huang Y, Liu J, et al. MicroRNA-122 Influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression[J]. Stem Cells and Development, 2013, 22(12):1839-1850. [47]Tian H, Cao YX, Zhang XS, et al. The targeting and functions of miRNA-383 are mediated by FMRP during spermatogenesis[J]. Cell Death & Disease, 2013, 4(5):e617. [48]Huszar JM, Payne CJ. MicroRNA 146(Mir146)modulates spermatogonial differentiation by retinoic acid in mice[J]. Biology of Reproduction, 2013, 88(1):15. [49] 于萌. miR-34c 在小鼠精原干细胞体外分化过程中的作用[D]. 杨凌:西北农林科技大学, 2013:1-2. [50] 徐璐, 陈蓉, 徐琪, 等. il1基因在鸡生殖系干细胞中的表达研究[J]. 中国家禽, 2014, 7:13-16. [51] Wünsch LK, Pfennig KS. Failed sperm development as a reprodu-ctive isolating barrier between species[J]. Evolution and Devel-opment, 2013, 15(6):458-465. [52] 余劲聪, 潘春, 马正花, 等. 牦牛远缘杂种雄性不育的研究现状[J]. 西南民族大学学报:自然科学版, 2008(S1):16-19. [53] 钟金城. 牦牛遗传与育种[M]. 成都:四川科学技术出版社, 1996. [54] Chen H, Jiang S, Zheng J, Lin Y. Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic[J]. Plant Biotechnology Journal, 2013, 11(3):336-343. |