[1]Weichert N, Saalbach I, Weichert H, et al. Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis[J]. Plant Physiology, 2010, 152(2):698-710. [2]Rosche E, Blackmore D, Tegeder M, et al. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons[J]. Plant Journal, 2002, 30(2):165-175. [3]Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks[J]. Current Opinion in Plant Biology, 2015, 25:130-137. [4]Lobo AKM, Martins MDO, Neto MCL, et al. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity[J]. Journal of Plant Physiology, 2015, 179:113-121. [5]Payyavula RS, Singh RK, Navarre DA. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism[J]. Journal of Experimental Botany, 2013, 64(16):5115-5131. [6]Ruan YL, Patrick JW, Bouzayen M, et al. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012, 17(11):656-665. [7]Weber H, Borisjuk L, Wobus U. Sugar import and metabolism during seed development[J]. Trends in Plant Science, 1997, 2(5):169-174. [8]Slewinski TL, Braun DM. Current perspectives on the regulation of whole-plant carbohydrate partitioning[J]. Plant Science, 2010, 178(4):341-349. [9]Peuke AD, Gessler A, Trumbore S, et al. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots[J]. Plant Cell and Environment, 2015, 38(3):433-447. [10]Li X, Wang C, Cheng J, et al. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. Unicolor[J]. BMC Plant Biology, 2014, 14(1):358. [11]Desnoues E, Gibon Y, Baldazzi V, et al. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios[J]. BMC Plant Biology, 2014, 14(1):336. [12]Chen L, Lin IW, Qu X, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. Plant Cell, 2015, 27(3):607-619. [13]Kühn C, Grof CP. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3):287-297. [14]Wind J, Smeekens S, Hanson J. Sucrose:Metabolite and signaling molecule[J]. Phytochemistry, 2010, 71(14-15):1610-1614. [15]Fallahi H, Scofield GN, Badger MR, et al. Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development[J]. Journal of Experimental Botany, 2008, 59(12):3283-3295. [16]Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3):235-246. [17]Morley-Smith ER, Pike MJ, Findlay K, et al. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds[J]. Plant Physiology, 2008, 147(4):2121-2130. [18]Gibson SI. Control of plant development and gene expression by su-gar signaling[J]. Current Opinion in Plant Biology, 2005, 8(1):93-102. [19]Hill LM. Metabolism of sugars in the endosperm of developing seeds of oilseed rape[J]. Plant Physiology, 2003, 131(1):228-236. [20]Borisjuk L, Rolletschek H, Radchuk R, et al. Seed development and differentiation:a role for metabolic regulation[J]. Plant Biology, 2004, 6(4):375-386. [21]Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants[J]. Journal of Biological Chemistry, 2012, 287(4):2288-2294. [22]Liu H, Wang C, Komatsu S, et al. Proteomic analysis of the seed development in Jatropha curcas:From carbon flux to the lipid accumulation[J]. Journal of Proteomics, 2013, 91:23-40. [23]Allen SM, Damude HG, Everard JD, et al. Sucrose transporter genes for increasing plant seed lipids:US, US20110126318 A1[P]. 2011-5-26. [24]Ribeiro P, Fernandez L, de Castro R, et al. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures:a metabolomics approach[J]. BMC Plant Biology, 2014, 14(1):223. [25]王艳颖, 胡文忠, 庞坤, 等. 高效液相色谱-蒸发光散射法测定苹果中可溶性糖的含量[J]. 食品与发酵工业, 2008, 34(6):129-131. [26]Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621-628. [27]Bates PD, Johnson SR, Cao X, et al. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3):1204-1209. [28]Hua W, Li R, Zhan G, et al. Maternal control of seed oil content in Brassica napus:the role of silique wall photosynthesis[J]. Plant Journal, 2012, 69(3):432-444. [29]张凌云, 王小艺, 曹一博. 油茶果实糖含量及代谢相关酶活性与油脂积累关系分析[J]. 北京林业大学学报, 2013, 35(4):55-60. [30] Wang F, Sanz A, Brenner ML, et al. Sucrose synthase, starch accumulation, and tomato fruit sink strength[J]. Plant Physiology, 1993, 101(1):321-327. [31]于安民, 张敏, 杨锦芬, 等. 阳春砂果实发育过程中可溶性糖及蔗糖代谢酶活性变化规律的研究[J]. 世界科学技术-中医药现代化, 2014, 7:1497-1504. [32]Moriguchi T, Sanada T, Yamaki S. Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. [J]. Journal of the American Society for Horticultural Science, 1990, 115(2):278-281. |