[1] 孙雪梅. 植物的硫同化及其相关酶活性在镉胁迫下的调节[J]. 植物生理与分子生物学学报, 2006, 32(1):9-16. [2] Harada E, Yamaguchi Y, Koizumi N, et al. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis[J]. Journal of Plant Physiology, 2002, 159(159):445-448. [3] Ilyas S, Rehman A. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis[J]. Environmental Monitoring & Assessment, 2015, 187(1):4115-4122. [4] 张贵珠, 王月梅, 赵鹏, 等. 以钴离子为探针测定半胱氨酸的研究[J]. 稀有金属, 1998, 22(1):55-59. [5] Yang NJ, Wang XX, Wan QJ. Electrochemical reduction of Zn(II)ions on L-cysteine coated gold electrodes[J]. Electrochimica Acta, 2006, 51(10):2050-2056. [6] 刘文涵, 单胜艳, 张丹, 等. 原子吸收硫化锌法间接测定半胱氨酸络合反应的机理研究[J]. 光谱学与光谱分析, 2005, 25(10):1717-1719. [7] Ghiamati E, Boroujerdi R. Cd-Cysteine nanorods as a fluorescence sensor for determination of Fe(III)in real samples[J]. Journal of Fluorescence, 2015, 26(1):1-13. [8] 段静静. Pseudomonas sp. QR-101生物合成L-半胱氨酸的系统生物学及相关转化途径研究[D]. 天津:南开大学, 2012. [9] Guédon E, Martin-Verstraete I. Cysteine metabolism and its regulation in bacteria[J]. Microbiol Monographs, 2007, 5:195-218. [10] Bick JA, Dennis JJ, Zylstra GJ, et al. Identification of a new class of 5’-adenylysulfate(APS)reductasefrom sulfate-assimilating bacteria[J]. Journal of Bactertiology, 2000, 182(1):135-142. [11] Brzywczy J, Sienko M, Kucharska A, et al. Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi[J]. Yeast, 2002, 19:29-35. [12] 宋超, 郑春丽, 王建英. 微生物硫酸盐的同化途径及其与重金属抗性的关系[J]. 安徽农业科学, 2012, 40(11):6368-6370, 6400. [13] Ono B, Hazu T, Yoshida S, et al. Cysteine biosynthesis in Saccharomyces cerevisiae:a new outlook on pathway andregulation[J]. Yeast, 1999, 15:1365-1375. [14] Koprivova A, Meyer AJ, Schween G, et al. Functional knockout of theadenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation[J]. Journal of Biological Chemistry, 2002, 277(35):32195-32201. [15] 钱林, 郑春丽, 柳建设. 嗜酸氧化亚铁硫杆菌ATP硫酸化酶的表达、纯化及性质鉴定[J]. 生物技术通报, 2012(6):136-140. [16] Zheng CL, Zhang YY, Liu YD, et al. Characterization and reconstitute of a[Fe4S4]adenosine 5'-phosphosulfate reductase from Acidithiobacillus ferrooxidans[J]. Current Microbiology, 2009, 58(6):586-592. [17] Zheng CL, Nie L, Qian L, et al. K30, H150, and H168 are essential residues for coordinating pyridoxal 5’-phosphate of O-Acetylserine sulfhydrylase from Acidithiobacillus ferrooxidans[J]. Current Microbiology, 2010, 60:461-465. [18] 郑春丽, 李艳君, 钱林, 等. 嗜酸氧化亚铁硫杆菌半胱氨酸合成酶的表达、纯化及其性质鉴定[J]. 生物技术通报, 2011(3):180-184. [19] Zheng CL, Chen MJ, Tao ZL, et al. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd 2+ stress:evidence from transcriptional, enzymatic, and metabolic profiles[J]. Extremophiles, 2015, 19:429-436. [20] 郑春丽, 王丹, 张礼, 等. 嗜酸氧化亚铁硫杆菌硫酸盐同化相关基因的鉴定与分析[J]. 生物技术通报, 2016, 32(2):131-139. [21] Thomas D, Surdin-Kerjan Y. Metabolism of sulphur amino acids in Saccharomyces cerevisiae[J]. Microbiology & Molecular Biology Reviews Mmbr, 1997, 61:503-532. [22] 唐杰. 基于半耽氨酸与重金属离子相互作用的分析应用研究[D]. 重庆:西南大学, 2011. [23] Yang W, Gooding JJ, Hibbert DB. Characterisation of gold eleetrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of Copper[J]. Journal of Electroanalytical Chemistry, 2001, 516(1-2):10-16. [24] Prudent M, Girault HH. The role of Copper in cysteine oxidation:study of intra- and inter-molecular reactions in mass spectrometry[J]. Metallomics Integrated Biometal Science, 2009, 1(2):157-165. [25] 赵楠, 林璨瑜, 王淑芳, 等. 过表达B基因的转基因微型番茄的获得[J]. 南开大学学报, 2006, 39(4):103-107. [26] 梁智万, 林秋红, 肖启华, 等. 口服谷胱甘肽(GSH)治疗慢性铅中毒临床疗效观察[J]. 中国工业医学杂志, 1997, 10(6):352-353. [27] Prashant M, Nisha KR, Sudesh KY. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis(L.)O. Kuntze[J]. Environmental Toxicology, 2007, 22(4):368-374. [28] 刘慧, 王晓蓉, 王为本, 等. 不同形态锌离子对鲫鱼谷胱甘肽系统的影响[J]. 中国环境学报, 2005, 25(2):169-173. [29] 孙琴, 王超. 土壤外源Cd和Pb复合污染对小麦(Tritioum asetivum L.)根系植物络合素和谷胱甘肽的影响[J]. 生态环 境, 2008, 17(5):1833-1838. [30] Rehman A, Anjum MS. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents:glutathione as detoxifying agent[J]. Environmental Monitoring & Assessment, 2011, 174(1-4):585-595. [31] Domínguez-Solís JR, López-Martín MC, Ager FJ, et al. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana[J]. Plant Biotechnology Journal, 2004, 2(6):469-476. [32] Noji M, Saito M, Nakamura M, et al. Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environment pollutants[J]. Plant Physiol, 2001, 126(3):973-980. [33] Dominguez-Solis JR, Gutierrez-Alcala G, Romero LC, et al. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance[J]. Journal of Biological Chemistry, 2001, 276(12):9297-9302. [34] Kawashima CG, Noji M, Nakamura M, et al. Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase[J]. Biotechnology Letters, 2004, 26(2):153-157. [35] Romeroy-Isart N, Vasak M. Advances in the structure and chemistry of metallothioneins[J]. Journal of Inorganic Biochemistry, 2002, 88(3-4):388-396. [36] 赵之伟, 曹冠华, 李涛. 金属硫蛋白的研究进展[J]. 云南大学学报:自然科学版, 2013, 35(3):390-398. [37] 张艳, 杨传平. 金属硫蛋白的研究进展[J]. 分子植物育种, 2006, 4(3):73-78. [38] Haq F, Mahoney M, Koropatnick J. Signaling events for metallothionein induction[J]. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 2003, 533(1-2):211-226. [39] 田晓丽, 郭军华. 金属硫蛋白的研究进展[J]. 国外医学药学分册, 2005, 32(2):119-124. [40] Li LS, Meng YP, Cao QF, et al. Type 1 metallothionein(ZjMT)is responsible for heavy metal tolerance in Ziziphus jujube[J]. Biochemistry, 2016, 81(6):565-573. [41] Vallee BL. Introduction to metallothionein[J]. Methods Enzymol, 1991, 205(1):3-7. [42] Cobbett CP. Goldsbrough. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J]. Plant Biology, 2002, 53(53):159-182. [43] Coyle P, Philcox JC, Carey LC, et al. Metallothionein:the multipurpose protein[J]. Cellular & Molecular Life Sciences Cmls, 2002, 59(4):627-647. [44] Kassim R, Ramseyer C, Enescu M. Oxidation reactivity of zinc-cysteine clusters in metallothionein[J]. Journal of Biological Inorganic Chemistry, 2013, 18(3):333-342. [45] Lavradas RT, Hauser-Davis RA, Lavandier RC, et al. Metal, metallothionein and glutathione levels in blue crab(Callinectes sp. )specimens from southeastern Brazil[J]. Ecotoxicology & Environmental Safety, 2014, 107(9):55-60. [46] Wang C, Zhang F, Cao W, et al. The identification of metallothionein in rare minnow(Gobiocypris rarus)and its expression following heavy metal exposure[J]. Environmental Toxicology & Pharmacology, 2014, 37(3):1283-1291. [47] Han YL, Zhang S, Liu GD, et al. Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris[J]. Ecotoxicology & Environmental Safety, 2015, 119:1-8. [48] Santovito G, Boldrin F, Irato, P. Metal and metallothionein distribution in different tissues of the mediterranean clam Venerupis philippinarum during copper treatment and detoxification[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2015, 174-175:46-53. [49] Murphy A, Taiz L. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes[J]. Plant Physiology, 1995, 109(3):945-954. [50] Dundar E, Sonmez GD, Unver T. Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential[J]. Molecular Genetics and Genomics, 2015, 290(1):187-199. [51] Tomas M, Pagani MA, Andreo CS, et al. Sunflower metallothionein family characterization. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms[J]. Journal of Inorganic Biochemistry, 2015, 148:35-48. [52] Klaassen CD, Liu J, Choudhuri S. Metallothionein:an intracellular protein to protect against cadmium toxicity[J]. Pharmacology and Toxicology, 1999, 39(39):267-294. [53] 卢永科, 川岛明, 堀井郁夫, 等. 顺铂对大鼠肝细胞毒性及谷胱甘肽的保护作用[J]. 中国公共卫生, 2004, 20(4):440-441. [54] Magda M, Helmut S. Cytotoxicity of metals in isolated fish cells:Importance of the cellular glutathione status[J]. Comparative Biochemistry and Physiology PartA, 1998, 120(1):83-88. [55] 阮湘元, 彭敏, 徐经伟, 等. 谷胱甘肽在汞表面吸附与自组装行为的原子力显微镜研究[J]. 分析化学研究简报, 2005, 32(11):1587-1589. [56] 彭敏. 谷胱甘肽对Cd 的解毒机理研究[J]. 东莞理工学院学报, 2014, 21(5):69-73. [57] 刘建华, 李燕, 王海军. 量子化学研究Cd 2+ 、Hg 2+ 、Pb 2+ 与谷肤甘肤相互作用[J]. 计算机与应用化学, 2013, 30(2):141-146. [58] Vicky M, Farideh J. Mercury(II)complex formation with glutathione in alkaline aqueous solution[J]. Journal of Biological Inorganic Chemistry, 2008, 13(4):541 -553. [59] Aviva L, Zhang LB, Peter LA. Structure and reactivity of a chromium(V)glutathione complex[J]. Inorganic Chemistry, 2003, 42(3):767-784. [60] Cheng F, Zhou XY. Electrochemical studies of glutathione monolayer assembled on a polycrystalline gold electrode[J]. Wuhan University Journal of Natural Sciences, 2002, 7(1):102 -106. [61] Cheng F, Zhou XY. Voltammetry and EQCM investigation of glutathione monolayer and its complex ation with Cu 2+ [J]. Electroanalysis, 2003, 15(20):1632 -1638. [62] Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current Opinion in Plant Biology, 2000, 3(3):211-216. [63] Cobbet CS. Phytochelatin and their roles in heavy metal detoxification[J]. Plant Physiology, 2000, 123(3):825-832. |