[1] Chen K, Fan B, Du L, et al. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Mol Biol, 2004, 56(2):271-283. [2] Chen Z. A superfamily of proteins with novel cysteine-rich repeats[J]. Plant Physiol, 2001, 126(2):473-476. [3] Yang K, Rong W, Qi L, et al. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013, 3:3021 . [4] Wrzaczek M, Brosche M, Salojarvi J, et al. Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis[J]. BMC Plant Biology, 2010, 10:95. [5] Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212. [6] Cbgowda R, Michael J, Fabian M, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J]. Molecular Plant Pathology, 2012, 13(2):135-147. [7] Yeh YH, Chang YH, Huang PY, et al. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015, 6:322. [8] Zhang X, Han X, Shi R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae[J]. Plant Physiol Biochem, 2013, 73(3):83-91. [9] Melotto M, Underwood W, Koczan J. Plant stomata function in innate immunity against bacterial in vasion[J]. Cell, 2006, 12(6):969-980. [10] Montesano M, Köiv V, Mäe A, et al. Novel receptor-like protein ki-nases induced by Erwinia carotovora and short oligogalacturonides in potato[J]. Molecular Plant Pathology, 2001, 2(6):339-346. [11] Czernic P, Visser B, Sun W, et al. Characterization of an Arabidopsis thaliana receptorlike protein kinase gene activated by oxidative stress and pathogen attack[J]. Plant J, 1999, 18(3):321-327. [12] Chen K, Du L, Chen Z. Sensitation of defense responses and activa-tion of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Mol Biol, 2003, 53:61-74. [13] Ohtake Y, Takahashi T, Komeda Y, et al. Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana[J]. Plant Cell Physiol, 2000, 41:1038-1044. [14] Burdiak P, Rusaczonek A, Witon? D, et al. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2015, 66(11):3325-3337. [15] Biswa R, Surabhi R, Shahina B, et al. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. The Plant Journal, 2007, 50(3):488-499. [16] Idanheimo N, Gauthier A, Salojarvi J, et al. The Arabidopsis thaliana cysteine-richreceptor-likekinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochem Biophys Res, 2014, 44(5):457-462. [17] Ederli L, Madeo L, Calderini O, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection.[J]. Journal of Plant Physiology, 2011, 168(15):1784-1794. [18] Yasuhiro K, Jan S, Paul D, et al. Direct regulation of the NADPH Oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell, 2014, 54:43-55. [19] Asai T, Tena G, Plotnikova J, et al. MAP kinase signaling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 41(5):977-983. [20] Gómez-Gómez L, Felix G, Boller T. A single locus determines sensitivity to bacterial flagellinin Arabidopsis thaliana[J]. PlantJ, 1999, 18:277-284. [21] Zeng W, Melotto M, He S. Plant stomata:a checkpoint of host immunity and pathogen virulence[J]. Curr Opin Biotechnol, 2010, 21:599-603. [22] Lange J, Xie Z, Broughton WJ, et al. A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors[J]. Plant Science, 1999, 14(2):133-145. [23] 杨坤. 小麦应答禾谷丝核菌的3个激酶基因的分离及功能分析[D]. 北京:中国农业科学院, 2014. [24] 张明伟. 水稻抗白叶枯病相关基因OsCRK1的鉴定和克隆[D]. 北京:中国农业科学院, 2015. [25] 张秀娟. 拟南芥类受体激酶CRK45对生物和非生物胁迫的响应[D]. 呼和浩特:内蒙古农业大学, 2013. [26] Tanaka H, Osakabe Y, Katsura S, et al. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis[J]. The Plant Journal, 2012, 70(4):599-613. [27] Zipfel C, Felix G. Plants and animals:a different taste for microb-es?[J]. Current Opinion in Plant Biology, 2005, 8:353-360. [28] Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126(3):467-475. [29] Woong B, So Y, Sang K, et al. Identification of a pollen-specific gene, SlCRK1(RFK2)in tomato[J]. Genes & Genomics, 2014, 36(3):303-311. [30] 曹玉婷, 丁艳菲, 朱诚. 类受体蛋白激酶与植物非生物胁迫应答[J]. 中国生物化学与分子生物学报, 2014(3):241-247. |