生物技术通报 ›› 2017, Vol. 33 ›› Issue (5): 40-49.doi: 10.13560/j.cnki.biotech.bull.1985.2017.05.006
齐心洁1, 王玥1, 2, 王彦晟1, 方国康1, 黄迎春1, 2
收稿日期:
2016-11-07
出版日期:
2017-05-25
发布日期:
2017-05-19
作者简介:
齐心洁,女,硕士研究生,研究方向:生物活性物质制备及生理功能;E-mail:qixinjie2014@126.com
基金资助:
QI Xin-jie1, WANG Yue1, 2, WANG Yan-sheng1, FANG Guo-kang1, HUANG Ying-chun1, 2
Received:
2016-11-07
Published:
2017-05-25
Online:
2017-05-19
摘要: 等温滴定量热法(ITC)近年来迅速发展并广泛应用于分子生物学及其相关领域的研究分子相互作用的生物物理技术,它是在恒定温度下唯一能够直接测量复合物形成过程中的热量变化的方法。它可以简单地通过测量两个溶液相互作用时吸收或放出的热量来提供分子相互作用的重要信息,如结合常数、结合位点数、自由能、焓和熵。综述了ITC的工作原理、技术特点,以及在蛋白质-配体相互作用方面的最新应用和未来的发展方向,表明ITC数据结果的有效性及其在该领域的应用价值。
齐心洁, 王玥, 王彦晟, 方国康, 黄迎春. 等温滴定量热法在蛋白质-配体相互作用中的应用[J]. 生物技术通报, 2017, 33(5): 40-49.
QI Xin-jie, WANG Yue, WANG Yan-sheng, FANG Guo-kang, HUANG Ying-chun. Applications of Isothermal Titration Calorimetry in Protein-ligand Interactions[J]. Biotechnology Bulletin, 2017, 33(5): 40-49.
[1] Perozzo R, Folkers G, Scapozzaa L. Thermodynamics of protein-ligand interactions:history, presence, and future aspects[J]. J Recept Signal Transduct Res, 2004, 24(1-2):1-52. [2] Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry:Methods, instruments, and uncertainties[J]. Anal Biochem, 2011, 409(2):220-229. [3] Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research—survey of the literature from 2010[J]. J Mol Recognit, 2012, 25(1):32-52. [4] Roselin LS, Lin MS, Lin PH, et al. Recent trends and some applications of isothermal titration calorimetry in biotechnology[J]. Biotechnol J, 2010, 5(1):85-98. [5] Liang Y. Applications of isothermal titration calorimetry in protein science[J]. Acta Biochim Biophys Sin(Shanghai), 2008, 40(7):565-576. [6] Myslinski JM, DeLorbe JE, Clements JH, et al. Protein-ligand interactions:thermodynamic effects associated with increasing nonpolar surface area[J]. J Am Chem Soc, 2011, 133(46):18518-18521. [7] Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry[J]. Biophys J, 1996, 71(4):2049-2055. [8] Connelly PR, Varadarajan R, Sturtevant JM, et al. Thermodynamics of protein-peptide interactions in the ribonuclease S system studied by titration calorimetry[J]. Biochemistry, 1990, 29(25):6108-6114. [9] Spolar RS, Record MT Jr. Coupling of local folding to site-specific binding of proteins to DNA[J]. Science, 1994, 263(5148):777-784. [10] Zhou YL, Liao JM, Chen J, et al. Macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase:implications for protein-protein interactions in intracellular environments[J]. Int J Biochem Cell Biol, 2006, 38(11):1986-1994. [11] Campagne S, Saurel O, Gervais V, et al. Structural determinants of specific DNA-recognition by the THAP zinc finger[J]. Nucleic Acids Res, 2010, 38(10):3466-3476. [12] Campagne S, Muller I, Milon A, et al. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1[J]. Nucleic Acids Res, 2012, 40(19):9927-9940. [13] Velazquez-Campoy A, Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands[J]. Nat Protoc, 2006, 1(1):186-191. [14] Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry[J]. J Mol Recognit, 2008, 21(1):1-19. [15] Falconer RJ, Penkova A, Jelesarovl I, et al. Survey of the year 2008:applications of isothermal titration calorimetry[J]. J Mol Recognit, 2010, 23(5):395-413. [16] Ross PD, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3102. [17] Furukawa A, Konuma T, Yanaka S, et al. Quantitative analysis of protein-ligand interactions by NMR[J]. Prog Nucl Magn Reson Spectrosc, 2016, 96(6):47-57. [18] Veliká B, Tomečková V, Fodor K, et al. (E)-2-Benzylidenecycloa-lkanones XII. * Kinetic measurement of bovine and human serum albumine interaction with selected chalcones and their cyclic chal-cone analogues by UV spectrophotometry[J]. Spectral Analysis Review, 2015, 3(1):1-8. [19] López-Lorente ÁI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis:potential and challenges[J]. Anal Bioanal Chem, 2016, 408(11):2875-2889. [20] Vachali PP, Li B, Bartschi A, et al. Surface plasmon resonance(SPR)-based biosensor technology for the quantitative characterization of protein-carotenoid interactions[J]. Arch Biochem Biophys, 2015, 572(15):66-72. [21] Schuck P. Analytical ultracentrifugation as a tool for studying protein interactions[J]. Biophys Rev, 2013, 5(2):159-171. [22] Smits AH, Vermeulen M. Characterizing protein-protein interactions using mass spectrometry:Challenges and opportunities[J]. Trends Biotechnol, 2016, 34(10):825-834. [23] Fernandes F, Coutinho A, Prieto M, et al. Electrostatically driven lipid-protein interaction:Answers from FRET[J]. Biochim Biophys Acta, 2015, 1848(9):1837-1848. [24] Vander Meulen KA, Saecker RM, Record MT Jr. Formation of a wrapped DNA-protein interface:experimental characterization and analysis of the large contributions of ions and water to the thermodynamics of binding IHF to H’ DNA[J]. J Mol Biol, 2008, 377(1):9-27. [25] Velázquez Campoy A, Freire E. ITC in the post-genomic era…? Priceless[J]. Biophys Chem, 2005, 115(2-3):115-124. [26] Bou-Abdallah F, Giffune TR. The thermodynamics of protein interactions with essential first row transition metals[J]. Biochim Biophys Acta, 2016, 1860(5):879-891. [27] Makowska J, Żamojć K, Wyrzykowski D, et al. Binding of Cu(II)ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2016, 153:451-456. [28] Irving H, Williams R. Order of stability of metal complexes[J]. Nature, 1948, 162(4123):746-747. [29] McCall KA, Fierke CA. Probing determinants of the metal ion selectivity in carbonic anhydrase using mutagenesis[J]. Biochemistry, 2004, 43(13):3979-3986. [30] Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1):1-37. [31] Rak J, Dejlová B, Lampová H, et al. On the solubility and lipophilicity of metallacarborane pharmacophores[J]. Mol Pharm, 2013, 10(5):1751-1759. [32] Barth RF, Coderre JA, Vicente MG, et al. Boron neutron capture therapy of cancer:current status and future prospects[J]. Clin Cancer Res, 2005, 11(11):3987-4002. [33] Hawthorne MF, Lee MW. A critical assessment of boron target compounds for boron neutron capture therapy[J]. J Neurooncol, 2003, 62(1-2):33-45. [34] Losytskyy MY, Kovalska VB, Varzatskii OA, et al. An interaction of the functionalized closo-borates with albumins:The protein fluorescence quenching and calorimetry study[J]. J Lumin, 2016, 169:51-60. [35] Zhang L, Wang Y, Li D, et al. The absorption, distribution, metabolism and excretion of procyanidins[J]. Food Funct, 2016, 7(3):1273-1281. [36] Barbehenn RV, Peter Constabel C. Tannins in plant-herbivore interactions[J]. Phytochemistry, 2011, 72(13):1551-1565. [37] Kilmister RL, Faulkner P, owney MO, et al. The complexity of condensed tannin binding to bovine serum albumin An isothermal titration calorimetry study[J]. Food Chem, 2016, 190:173-178. [38] Harbertson JF, Kilmister RL, Kelm MA, et al. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation[J]. Food Chem, 2014, 160:16-21. [39] 黄毅, 黄金花, 谢青季, 等. 糖-蛋白质相互作用[J]. 化学进 展, 2008, 98(6):942-950. [40] Disney MD, Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens[J]. Chem Biol, 2004, 11(12):1701-1707. [41] Patra D, Mishra P, Vijayan M, et al. Negative cooperativity and high affinity in chitooligosaccharide binding by a mycobacterium smegmatis protein containing LysM and lectin domains[J]. Biochemistry, 2016, 55(1):49-61. [42] Koharudin LM, Viscomi AR, Montanini B, et al. Structure-function analysis of a CVNH-LysM lectin expressed during plant infection by the rice blast fungus Magnaporthe oryzae[J]. Structure, 2011, 19(5):662-674. [43] Lecoq L, Bougault C, Hugonnet JE, et al. Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L, D-transpeptidase[J]. Structure, 2012, 20(5):850-861. [44] Liu T, Liu Z, Song C, et al. Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336(6085):1160-1164. [45] Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, et al. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization[J]. Elife. 2013, 2:e00790. [46] Hadian M, Hashemhosseini SM, Farahnaky A, et al. Isothermal titration calorimetric and spectroscopic studies of β-lactoglobulin-water-soluble fraction of Persian gum interaction in aqueous solution[J]. Food Hydrocoll, 2016, 55:108-118. [47] Zhou J, Ralston J, Sedev R, et al. Functionalized gold nanoparticles:synthesis, structure and colloid stability[J]. J Colloid Interface Sci, 2009, 331(2):251-262. [48] Chatterjee T, Chakraborti S, Joshi P, et al. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein[J]. FEBS J, 2010, 277(20):4184-4194. [49] Liu S, Han Y, Qiao R, et al. Investigations on the interactions between plasma proteins and magnetic iron oxide nanoparticles with different surface modifications[J]. J Phys Chem C, 2010, 114(49):21270-21276. [50] Chakraborti S, Joshi P, Chakravarty D, et al. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin[J]. Langmuir, 2012, 28(30):11142-11152. [51] Rabbani G, Khan MJ, Ahmad A, et al. Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase[J]. Colloids Surf B Biointerfaces, 2014, 123:96-105. [52] Lindman S, Lynch I, Thulin E, et al. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity[J]. Nano Lett, 2007, 7(4):914-920. [53] Baier G, Costa C, Zeller A, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake[J]. Macromol Biosci, 2011, 11(5):628-638. [54] Koppolu BP, Smith SG, Ravindranathan S, et al. Controlling chitosan-based encapsulation for protein and vaccine delivery[J]. Biomaterials, 2014, 35(14):4382-4389. [55] Winzen S, Schoettler S, Baier G, et al. Complementary analysis of the hard and soft protein corona:sample preparation critically effects corona composition[J]. Nanoscale, 2015, 7(7):2992-3001. [56] Gagner JE, Shrivastava S, Qian X, et al. Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface:a perspective[J]. J Phys Chem Lett, 2012, 3(21):3149-3158. [57] Monopoli MP, Aberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials[J]. Nat Nanotechnol, 2012, 7(12):779-786. [58] Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7):543-557. [59] Shemetov AA, Nabiev I, Sukhanova A. Molecular Interaction of proteins and peptides with nanoparticles[J]. ACS Nano, 2012, 6(6):4585-4602. [60] De M, You CC, Srivastava S, et al. Biomimetic interactions of proteins with functionalized nanoparticles:a thermodynamic study[J]. J Am Chem Soc, 2007, 129(35):10747-10753. [61] Rajarathnam K, Rösgen J. Isothermal titration calorimetry of membrane proteins - progress and challenges[J]. Biochim Biophys Acta, 2014, 1838(1):69-77. [62] Reyes N, Oh S, Boudker O. Binding thermodynamics of a glutamate transporter homolog[J]. Nat Struct Mol Biol, 2013, 20(5):634-640. [63] Chavan H, Li F, Tessman R, et al. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver[J]. J Biol Chem, 2015, 290(12):7871-7886. [64] Boudker O, Oh S. Isothermal titration calorimetry of ion-coupled membrane transporters[J]. Methods, 2015, 76:171-182. [65] Langelaan DN, Ngweniform P, Rainey JK. Biophysical characterization of G-protein coupled receptor-peptide ligand binding[J]. Biochem Cell Biol, 2011, 89(2):98-105. [66] Finger S, Kerth A, Dathe M, et al. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity[J]. Biochim Biophys Acta, 2015, 1848(11):2998-3006. [67] Pozzi N, Chen R, Chen Z, et al. Rigidification of the autolysis loop enhances Na + binding to thrombin[J]. Biophys Chem, 2011, 159(1):6-13. [68] Sotoft LF, Westh P, Christensen KV, et al. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry[J]. Thermochim Acta, 2010, 501(1-2):84-90. [69] Brogan AP, Widger WR, Bensadek D, et al. Development of a technique to determine bicyclomycinrho binding and stoichiometry by isothermal titration calorimetry and mass spectrometry[J]. J Am Chem Soc, 2005, 127(8):2741-2751. [70] Lei H, Liu J, Song L, et al. Development of a highly sensitive and specific immunoassay for determining chrysoidine, a banned dye, in soybean milk film[J]. Molecules, 2011, 16(12):7043-7057. [71] Gui WJ, Xu Y, Shou LF, et al. Liquid chromatography-tandem mass spectrometry for the determination of chrysoidine in yellow-fin tuna[J]. Food Chem, 2010, 122(4):1230-1234. [72] Yang BJ, Hao F, Li JR, et al. Characterization of the binding of chrysoidine, an illegal food additive to bovine serum albumin[J]. Food Chem Toxicol, 2014, 65:227-232. [73] Sun H, Liu Y, Li M, et al. Toxic effects of chrysoidine on human serum albumin:isothermal titration calorimetry and spectroscopic investigations[J]. Luminescence, 2016, 31(2):335-340. [74] Bradrick TD, Beechem JM, Howell EE. Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein[J]. Biochemistry, 1996, 35(35):11414-11424. [75] Rehman AA, Ahsan H, Khan FH. Identification of a new alpha-2-macroglobulin:Multi-spectroscopic and isothermal titration calorimetry study[J]. Int J Biol Macromol, 2016, 83:366-375. |
[1] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[2] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[3] | 王慕镪, 陈琦, 马薇, 李春秀, 欧阳鹏飞, 许建和. 机器学习方法在酶定向进化中的应用进展[J]. 生物技术通报, 2023, 39(4): 38-48. |
[4] | 撒世娟, 伍涵宇, 温媛, 陈雪娜, 郑蕊, 姚新灵. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202. |
[5] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[6] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[7] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[8] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
[9] | 易芳, 来鹏程, 郑希鳌, 胡帅, 高燕丽. Kod DNA聚合酶的制备及纯化研究[J]. 生物技术通报, 2022, 38(5): 183-190. |
[10] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
[11] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
[12] | 马荣, 尚方正, 潘剑锋, 戎友俊, 王敏, 李金泉, 张燕军. 细胞内mRNA翻译影响因素及翻译组学的研究进展[J]. 生物技术通报, 2022, 38(12): 115-126. |
[13] | 陈臣, 黄芝阳, 于海燕, 袁海彬, 田怀香. 原核生物转录调控研究技术及进展[J]. 生物技术通报, 2022, 38(10): 54-65. |
[14] | 王智博, 王道平, 苗兰, 李瑛, 潘映红, 刘建勋. 血液样本蛋白质组分析方法的比较研究[J]. 生物技术通报, 2021, 37(8): 307-318. |
[15] | 康凌云, 陈建胜, 甘瀚凌, 韩露露, 冯海霞, 刁其玉, 邢凯, 崔凯. 基于转录组学技术分析蛋白质限制与补偿对羔羊肝脏抗氧化性能的影响[J]. 生物技术通报, 2021, 37(6): 171-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||