生物技术通报 ›› 2017, Vol. 33 ›› Issue (7): 49-61.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0106
王大洲1,郭天笑2,郑实1,商颖1,2,许文涛2
收稿日期:
2017-02-20
出版日期:
2017-07-11
发布日期:
2017-07-11
作者简介:
王大洲,男,硕士研究生,研究方向:食品安全检测技术;E-mail:1015454171@qq.com
基金资助:
WANG Da-zhou1 ,GUO Tian-xiao2 ,ZHENG Shi1, SHANG Ying1,2, XU Wen-tao2
Received:
2017-02-20
Published:
2017-07-11
Online:
2017-07-11
摘要: 等温扩增技术在近20多年,得到了快速发展,依靠其等温反应的优势正逐渐取代传统的体外扩增技术聚合酶链式反应(Ploymerase chain reaction,PCR),其已经在临床医学、检验医学、分子生物学、基因组学、食品安全等不同领域中的发挥着重要作用,特别是在致病菌、病毒等微生物的检测中。将选取10余种关注度较高的等温扩增技术,主要针对其反应原理、优缺点以及发展应用等方面进行简要概述和对比,最后展望了等温扩增技术未来的发展趋势,以期对相关研究领域的发展起到积极的促进作用。
王大洲,郭天笑,郑实,商颖,许文涛. 核酸等温扩增技术在微生物快速检测中的研究进展[J]. 生物技术通报, 2017, 33(7): 49-61.
WANG Da-zhou ,GUO Tian-xiao ,ZHENG Shi, SHANG Ying, XU Wen-tao. Research Progress on the Isothermal Nucleic Acid Amplification Techniques in Rapid Detection of Microorganisms[J]. Biotechnology Bulletin, 2017, 33(7): 49-61.
[1] Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids[J] . Chemical Reviews, 2015, 115(22):12491-12545. [2] Compton J. Nucleic acid sequence-based amplification[J] . Nature, 1991, 350(6313):91-92. [3] Kwoh DY, Davis GR, Whitfield KM, et al. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format[J] . Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(4):1173-1177. [4] Guatelli JC, Whitfield KM, Kwoh DY, et al. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication[J] . Proceedings of the National Academy of Sciences, 1990, 87(5):1874-1878. [5] Li J, Macdonald J. Advances in isothermal amplification:novel strategies inspired by biological processes[J] . Biosensors & Bioelectronics, 2015, 64:196-211. [6] Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification(NASBA)[J] . Molecular Biotechnology, 2002, 20(2):163-179. [7] Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques[J] . Analytica Chimica Acta, 2015, 853:30-45. [8] Gill P, Ghaemi A. Nucleic Acid Isothermal Amplification Technologies—a review[J] . Nucleosides, Nucleotides and Nucleic Acids, 2008, 27(3):224-243. [9] 汪琳, 罗英, 周琦, 等. 核酸恒温扩增技术研究进展[J] . 生物技术通讯, 2011, 22(2):296-302. [10] Lau LT, Reid SM, King DP, et al. Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification(NASBA)[J] . Veterinary Microbiology, 2008, 126(1):101-110. [11] Zhao X, Dong T, Yang Z, et al. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens:design and validation[J] . Lab on a Chip, 2012, 12(3):602-612. [12] Clancy E, Coughlan H, Higgins O, et al. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis[J] . Journal of Microbiological Methods, 2016, 127:197-202. [13] H?nsvall BK, Robertson LJ. Real-time nucleic acid sequence-based amplification(NASBA)assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts[J] . Experimental Parasitology, 2017, 172:61-67. [14] Zeng W, Yao W, Wang Y, et al. Molecular detection of genotype II grass carp reovirus based on nucleic acid sequence-based amplification combined with enzyme-linked immunosorbent assay(NASBA-ELISA)[J] . Journal of Virological Methods, 2017, 243:92-97. [15] Fire A, Xu SQ. Rolling replication of short DNA circles[J] . Proceedings of the National Academy of Sciences, 1995, 92(10):4641-4645. [16] Liu D, Daubendiek SL, Zillman MA, et al. Rolling circle DNA synthesis:small circular oligonucleotides as efficient templates for DNA polymerases[J] . Journal of the American Chemical Society, 1996, 118(7):1587-1594. [17] Blanco L, Bernad A, Lázaro JM, et al. Highly efficient DNA synthesis by the phage Φ29 DNA polymerase. Symmetrical mode of DNA replication[J] . Journal of Biological Chemistry, 1989, 264(15):8935-8940. [18] 彭涛. 核酸等温扩增技术及其应用[D] . 北京:科学出版社, 2009. [19] Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J] . Nature Genetics, 1998, 19(3):225-232. [20] Dean FB, Nelson JR, Giesler TL, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification[J] . Genome Research, 2001, 11(6):1095-1099. [21] 何艳, 蒋涛. 基于链置换反应的DNA等温扩增技术应用进展[J] . 医学综述, 2010, 16(1):24-27. [22] Daubendiek SL, Ryan K, Kool ET. Rolling-circle RNA synthesis:circular oligonucleotides as efficient substrates for T7 RNA polymerase[J] . Journal of the American Chemical Society, 1995, 117(29):7818-7819. [23] Dean FB, Hosono S, Fang L, et al. Comprehensive human genome amplification using multiple displacement amplification[J] . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8):5261-5266. [24] Spits C, Le Caignec C, De Rycke M, et al. Optimization and evaluation of single-cell whole-genome multiple displacement amplification[J] . Human Mutation, 2006, 27(5):496-503. [25] Luthra R, Medeiros LJ. Isothermal multiple displacement amplification:a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens[J] . The Journal of Molecular Diagnostics, 2004, 6(3):236-242. [26] Rockett R, Barraclough KA, Isbel NM, et al. Specific rolling circle amplification of low-copy human polyomaviruses BKV, HPyV6, HPyV7, TSPyV, and STLPyV[J] . Journal of Virological Methods, 2015, 215:17-21. [27] Wen J, Li W, Li J, et al. Study on rolling circle amplification of Ebola virus and fluorescence detection based on graphene oxide[J] . Sensors and Actuators B:Chemical, 2016, 227:655-659. [28] Hao L, Gu H, Duan N, et al. An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS 2 nanosheet for Staphylococcus aureus detection[J] . Analytica Chimica Acta, 2017, 959:83-90. [29] Gusev Y, Sparkowski J, Raghunathan A, et al. Rolling circle amplification:a new approach to increase sensitivity for immunohistochemistry and flow cytometry[J] . American Journal of Pathology 2001, 159(1):63-69. [30] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J] . Nucleic Acids Research, 2000, 28(12):e63. [31] Nagamine K, Watanabe K, Ohtsuka K, et al. Loop-mediated isothermal amplification reaction using a nondenatured template[J] . Clinical Chemistry, 2001, 47(9):1742-1743. [32] Kaneko H, Kawana T, Fukushima E, et al. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances[J] . Journal of Biochemical and Biophysical Methods, 2007, 70(3):499-501. [33] Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers[J] . Molecular and Cellular Probes, 2002, 16(3):223-229. [34] Aonuma H, Yoshimura A, Kobayashi T, et al. A single fluorescence-based LAMP reaction for identifying multiple parasites in mosquitoes[J] . Experimental Parasitology, 2010, 125(2):179-183. [35] He L, Xu H. Development of a multiplex loop-mediated isothermal amplification(mLAMP)method for the simultaneous detection of white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp[J] . Aquaculture, 2011, 311(1):94-99. [36] Liang C, Chu Y, Cheng S, et al. Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing[J] . Analytical Chemistry, 2012, 84(8):3758-3763. [37] Tanner NA, Zhang Y, Evans Jr TC. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification[J] . Biotechniques, 2012, 53(2):81-89. [38] Chen Y, Cheng N, Xu Y, et al. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor[J] . Biosensors and Bioelectronics, 2016, 81:317-323. [39] Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification[J] . EMBO Reports, 2004, 5(8):795-800. [40] An L, Wen T, Ranalli TA, et al. Characterization of a thermostable UvrD helicase and its participation in helicase dependent amplifi-cation[J] . Journal of Biological Chemistry, 2005, 280(32):28952-28958. [41] Li Y, Kumar N, Gopalakrishnan A, et al. Detection and species identification of malaria parasites by isothermal tHDA amplification directly from human blood without sample preparation[J] . Journal of Molecular Diagnostics, 2013, 15(5):634-641. [42] Motré A, Li Y, Kong H. Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase[J] . Gene, 2008, 420(1):17-22. [43] Xu Y, Kim HJ, Kays A, et al. Simultaneous amplification and scr-eening of whole plasmids using the T7 bacteriophage replisome[J] . Nucleic Acids Research, 2006, 34(13):e98-e98. [44] Goldmeyer J, Kong H, Tang W. Development of a Novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection[J] . The Journal of Molecular Diagnostics, 2007, 9(5):639-644. [45] Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins[J] . PLoS Biology 2006, 4(7):e204. [46] 吕蓓, 程海荣, 严庆丰, 等. 用重组酶介导扩增技术快速扩增核酸[J] . 中国科学:生命科学, 2010, 40(10):983-988. [47] Liu J, Morrical SW. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery[J] . Virology Journal, 2010, 7(1):128-133. [48] Euler M, Wang Y, Nentwich O, et al. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus[J] . Journal of Clinical Virology, 2012, 54(4):308-312. [49] Tsaloglou MN, Watson RJ, Rushworth CM, et al. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform[J] . Analyst, 2015, 140(1):258-264. [50] Hang R, Yang M, Zhang G, et al. Development of a rapid recombinase polymerase amplification assay for detection of Brucella in blood samples[J] . Molecular & Cellular Probes, 2016, 30(2):122-124. [51] Wharam SD, Marsh P, Lloyd JS, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure[J] . Nucleic Acids Research, 2001, 29(11):e54. [52] Hall MJ, Wharam SD, Weston A, et al. Use of signal-mediated amplification of RNA technology(SMART)to detect marine cyanophage DNA[J] . Biotechniques, 2002, 32(3):604-611. [53] Murakami, T, Sumaoka J, Komiyama M. Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification[J] . Nucleic Acids Research, 2012, 40(3):e22. [54] 周敏, 张宏萍, 陆仁飞, 等. 三向连接构造组合引物介导的滚环扩增技术检测肠道病毒 71 型方法的建立[J] . 山东医药, 2015(28):21-23 111. [55] Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA[J] . Molecular Biosystems, 2014, 10(5):970-1003. [56] Kurn N, Chen P, Heath JD, et al. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications[J] . Clinical Chemistry, 2005, 51(10):1973-1981. [57] 何水林. 基因工程[M] . 北京:科学出版社, 2008. [58] Barker CS, Griffin C, Dolganov GM, et al. Increased DNA microarray hybridization specificity using sscDNA targets[J] . BMC Genomics, 2005, 6(1):1-8. [59] Guo X, Guo Y, Yan S, et al. A new molecular diagnosis method combined single primer isothermal amplification with rapid isothermal detection assay in detection of group B Streptococcus[J] . African Journal of Microbiology Research, 2013, 7(34):4317-4322. [60] Wang J, Rui L, Hu L, et al. Development of a quantitative fluorescence single primer isothermal amplification-based method for the detection of Salmonella[J] . International Journal of Food Microbiology, 2015, 219:22-27. [61] Mukai H, Sagawa H, Uemori T, et al. Method for amplifying nucleic acid sequence:US, 6951722[P] . 2005-10-4. [62] Mukai H, Uemori T, O, Kobayashi E, et al. Highly efficient isothermal DNA amplification system using three elements of 5’-DNA-RNA-3’ chimeric primers, RNaseH and strand-displacing DNA polymerase[J] . Journal of Biochemistry, 2007, 142(2):273-281. [63] Uemori T, Mukai H, O, Moriyama M, et al. Investigation of the molecular mechanism of ICAN, a novel gene amplification method[J] . Journal of Biochemistry, 2007, 142(2):283-292. [64] Isogai E, Makungu C, Yabe J, et al. Detection of Salmonella invA by isothermal and chimeric primer-initiated amplification of nucleic acids(ICAN)in Zambia[J] . Comparative Immunology Microbiology & Infectious Diseases, 2005, 28(5):363-370. [65] Horii T, Monji A, Uemura K, et al. Rapid detection of fluoroquino-lone resistance by isothermal chimeric primer-initiated amplifica-tion of nucleic acids from clinical isolates of Neisseria gonorrho-eae[J]. Journal of Microbiological Methods, 2006, 65(3):557-561. [66] Urasaki N, Kawano S, Mukai H, et al. Rapid and sensitive detection of “Candidatus Liberibacter asiaticus” by cycleave isothermal and chimeric primer-initiated amplification of nucleic acids[J]. Journal of General Plant Pathology, 2008, 74(2):151-155. [67] Walker GT, Little MC, Nadeau JG, et al. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(1):392-396. [68] Little MC, Andrews J, Moore R, et al. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET[J]. Clinical Chemistry, 1999, 45(6):777-784. [69] Nuovo GJ. In situ strand displacement amplification:an improved technique for the detection of low copy nucleic acids[J]. Diagnostic Molecular Pathology, 2000, 9(4):195-202. [70] Li W, Yang Y, Chen J, et al. Detection of lead(II)ions with a DNAzyme and isothermal strand displacement signal amplification[J]. Biosensors and Bioelectronics, 2014, 53:245-249. [71] Yao Z, Lidgard G. Methods for rapid, single-step strand displacem-ent amplification of nucleic acids:US, 11/838, 024[P]. 2007-8-13. [72] 尤其敏, 净汪, 林胡, 等. 切口酶扩增靶核酸序列的方法及用于扩增靶核酸序列的试剂盒及其应用:中国, 200610057262[P]. 2006-10-25. [73] 马丽敏, 卢亦愚. 核酸等温扩增技术研究进展[J]. 浙江预防医学, 2013, 25(1):24-27. [74] Van Ness J, Van Ness LK, et al. Isothermal reactions for the amplification of oligonucleotides[J]. Proceedings of the National Academy of Sciences, 2003, 100(8):4504-4509. [75] Nie J, Zhang DW, Cai T, et al. G-quadruplex based two-stage isothermal exponential amplification reaction for label-free DNA colorimetric detection[J]. Biosensors & Bioelectronics, 2014, 56:237-242. [76] Ma F, Yang Y, Zhang CY. Ultrasensitive detection of transcription factors using transcription-mediated isothermally exponential amplification-induced chemiluminescence[J]. Analytical Chemistry, 2014, 86(12):6006-6011. [77] Yu Y, Chen Z, Jian W, et al. Ultrasensitive electrochemical detection of avian influenza A(H7N9)virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires[J]. Biosensors and Bioelectronics, 2015, 64:566-571. [78] Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics:a critical review[J]. Lab on a Chip, 2012, 12(14):2469-2486. [79] Singh R, Maganti RJ, Jabba SV, et al. Microarray-based comparison of three amplification methods for nanogram amounts of total RNA[J]. American Journal of Physiology-Cell Physiology, 2005, 288(5):C1179-C1189. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[6] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[7] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[8] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[9] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[10] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[11] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[12] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[13] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[14] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[15] | 胡锦超, 沈文琦, 徐超业, 樊雅祺, 卢浩宇, 蒋雯杰, 李世龙, 晋洪晨, 骆健美, 王敏. 微生物酸胁迫耐受性能强化的研究进展[J]. 生物技术通报, 2023, 39(11): 137-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||