生物技术通报 ›› 2018, Vol. 34 ›› Issue (6): 38-47.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0909
王珂雯 ,尹雪 ,王宇 ,李玉花
收稿日期:
2017-10-26
出版日期:
2018-06-26
发布日期:
2018-07-03
作者简介:
王珂雯,女,硕士,研究方向:合成生物学;E-mail:2421881780@qq.com
基金资助:
WANG Ke-wen ,YIN Xue, WANG Yu ,LI Yu-hua
Received:
2017-10-26
Published:
2018-06-26
Online:
2018-07-03
摘要: 酿酒酵母(Saccharomyces cerevisiae)作为最简单的真核模式生物被广泛应用于生命科学的各项研究中。目前,大多数天然产物的主要生产途径是从原材料中直接提取,该方法效率较低,同时消耗了大量的生物资源,已逐渐被新兴的合成生物学方法所取代。其中通过改造酿酒酵母自身的代谢途径并加入异源代谢途径生产目标天然产物已成为一种高效的资源获取途径。通过对外源基因启动子的优化及改造,调控外源基因在宿主中的表达水平,从而协调宿主自身代谢途径,定向合成目的代谢产物是酵母合成生物学和代谢工程的研究热点。从构建酿酒酵母合成天然产物过程中启动子结构、类型及优化表达的方法进行了综述,为相关研究者利用酿酒酵母作为底盘细胞进行合成生物学的研究提供参考。
王珂雯 ,尹雪 ,王宇 ,李玉花. 启动子的选择及优化在酿酒酵母代谢工程中的应用[J]. 生物技术通报, 2018, 34(6): 38-47.
WANG Ke-wen ,YIN Xue, WANG Yu ,LI Yu-hua. Application of Selection and Optimization of Promoter in Metabolic Engineering of Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2018, 34(6): 38-47.
[1] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J] . Science, 2015, 349(6252):1095. [2] Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae[J] . Metab Eng, 2015, 32:1-11. [3] Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J] . Nature Biotechnology, 2015, 33(4):377-383. [4] 许静, 徐俊. 海洋共附生微生物天然产物生物合成基因研究进展[J] . 微生物学报, 2008, 48(7):975-979. [5] 王勇. 新本草计划——基于合成生物学的药用植物活性代谢物研究[J] . 生物工程学报, 2017, 33(3):478-485. [6] Jiang H, Wood KV, Morgan JA. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae[J] . Appl Environ Microbiol, 2005, 71(6):2962-2969. [7] Kannan K, Gibson DG. Yeast genome, by design[J] . Science, 2017, 355(6329):1024. [8] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J] . Science, 2015, 349(6252):1095-1100. [9] Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J] . Metabolic Engineer-ing, 2013, 20(5):146-156. [10] Xie W, Liu M, et al. Construction of a controllable β-carotene bio-synthetic pathway by decentralized assembly strategy in Saccharo-myces cerevisiae[J] . Biotechnol Bioeng, 2014, 1:125-133. [11] Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J] . Proc Natl Acad Sci USA, 2012, 109(3):111-118. [12] Leonard E, et al. Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae[J] . Appl Environ Microbiol, 2005, 71(12):8241. [13] Medina VG, Almering MJH, Maris AJAV, et al. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor[J] . Appl Environ Microbiol, 2010, 76(1):190-195. [14] Chen X, Nielsen KF, Borodina I, et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism[J] . Biotechnol Biofuels, 2011, 4(1):21. [15] Yu KO, Ju J, Kim SW, et al. Synthesis of faees from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase[J] . Biotechnol Bioeng, 2012, 1:110-115. [16] Peraltayahya PP, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel[J] . Nature Communications, 2011, 2(1):483. [17] Sauer M, Branduardi P, Valli M, et al. Production of l-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii[J] . Appl Environ Microbiol, 2004, 70(10):6086-6091. [18] Raab AM, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J] . Metab Eng, 2010, 12(6):518-525. [19] Maris AJAV, Geertman JMA, Vermeulen A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a c2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast[J] . Appl Environ Microbiol, 2004, 70(1):159-166. [20] Zhao L, Wang J, Zhou J, et al[modification of carbon flux in Sacchromyces cerevisiae to improve l-lactic acid production] [J] . Acta Microbiologica Sinica, 2011, 51(1):50. [21] Blazeck J, Alper HS. Promoter engineering:Recent advances in controlling transcription at the most fundamental level[J] . Biotechnol J, 2013, 8(1):46-58. [22] Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast tata box-containing genes[J] . Cell, 2004, 116(5):699-709. [23] Rando OJ, Winston F. Chromatin and transcription in yeast[J] . Genetics, 2012, 190(2):351. [24] Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters[J] . Nature Communications, 2015, 6:7810. [25] Giniger E, et al. Specific DNA binding of gal4, a positive regulatory protein of yeast[J] . Cell, 1985, 40(4):767-774. [26] Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae:Transcription factor regulation and function, mechani-sms of initiation, and roles of activators and coactivators[J] . Genetics, 2011, 189(3):705-736. [27] Partow S, Siewers V, Bj?rn S, et al. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae[J] . Yeast, 2010, 27(11):955-964. [28] Wang D, Wang L, Hou L, et al. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid[J] . Annals of Microbiology, 2015, 65(4):2323-2331. [29] Sun J, Shao Z, Zhao H, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J] . Biotechnol Bioeng, 2012, 8:2082. [30] Blount BA, Weenink T, et al. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology[J] . PLoS One, 2012, 7(3):e33279. [31] Monfort A, Finger S, Sanz P, et al. Evaluation of different promoters for the efficient production of heterologous proteins in baker’s yeast[J] . Biotechnology Letters, 1999, 21(3):225-229. [32] Hubmann G, et al. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[J] . Methods Mol Biol, 2014, 1152:17-42. [33] Emmerstorfer A, et al. Over-expression of ice2 stabilizes cytochro-me p450 reductase in Saccharomyces cerevisiae and pichia pastoris[J] . Biotechnol J, 2015, 10(4):623-635. [34] Zacharioudakis I, et al. Bimodal expression of yeast gal genes is controlled by a long non-coding rna and a bifunctional galactoki-nase[J] . Biochem Biophys Res Commun, 2017, 1:63-69. [35] Horák J. Regulations of sugar transporters:Insights from yeast[J] . Current Genetics, 2013, 59(1-2):1-31. [36] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimala-rial drug precursor artemisinic acid in engineered yeast[J] . Nature, 2006, 440(7086):940. [37] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound k in metabolically engineered yeast[J] . Cell Research, 2014, 24(6):770-773. [38] Bahieldin A, et al. Efficient production of lycopene in Saccharom-yces cerevisiae by expression of synthetic crt genes from a plasmid harboring the adh2 promoter[J] . Plasmid, 2014, 72:18. [39] Lee KK, Da SN, Kealey JT. Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in escherichia coli and Saccharomyces cerevisiae[J] . Analytical Biochemistry, 2009, 394(1):75-80. [40] Bernal DAN. Metabolic Engineering of Saccharomyces cerevisiae for the production of aromatic componds[D] . Brisbane: School of Chemistry and Molecular Biosciences, University of Queensland, 2012. [41] Kim SI, Ha BS, et al. Evaluation of copper-inducible fungal laccase promoter in foreign gene expression in pichia pastoris[J] . Biotechnol Bioprocess Engineering, 2016, 1:53-59. [42] Gross A, R?del G, Ostermann K. Application of the yeast pherom-one system for controlled cell-cell communication and signal ampl-ification[J] . Lett Appl Microbiol, 2011, 5:521-526. [43] Ammerer G. Identification, purification, and cloning of a polypeptide(prtf/grm)that binds to mating-specific promoter elements in yeast[J] . Genes Dev, 1990, 4(2):299-312. [44] Gancedo JM, Flores CL, Gancedo C. The repressor rgt1 and the camp-dependent protein kinases control the expression of the suc2 gene in Saccharomyces cerevisiae[J] . BBA-General Subjects, 2015, 1850(7):1362-1367. [45] Silva NAD, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae[J] . Fems Yeast Research, 2012, 12(2):197-214. [46] Poor CB, Wegner SV, Li H, et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator aft2[J] . Proc Natl Acad Sci USA, 2014, 111(11):4043-4048. [47] Zhu Y, Sun J, Zhu Y, et al. Endogenic oxidative stress response contributes to glutathione over-accumulation in mutant Saccharomyces cerevisiae y518[J] . Appl Microbiol Biotechnol, 2015, 99(17):7069-7078. [48] Noble J, Sanchez I, Blondin B. Identification of new Saccharomyces cerevisiae variants of the met2 and skp2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation[J] . Microbial Cell Factories, 2015, 14(1):68. [49] Anton C, Zanolari B, Arcones I, et al. Involvement of the exomer complex in the polarized transport of ena1 required for Saccharomyces cerevisiae survival against toxic cations[J] . Molecular Biology of the Cell, 2017, mbc. E17-09-0549. [50] Zhang C, Li Z, Zhang X, et al. Transcriptomic profiling of chemical exposure reveals roles of yap1 in protecting yeast cells from oxidative and other types of stresses[J] . Yeast, 2016, 33(1):5-19. [51] Martínez JL, Liu L, Petranovic D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae[J] . Biotechnol Bioeng, 2015, 112(1):181. [52] Hubmann G, Thevelein JM, Nevoigt E. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[M] . Springer New York, 2014. [53] Williams TC, Averesch NJH, Winter G, et al. Quorum-sensing linked rna interference for dynamic metabolic pathway control in Saccharomyces cerevisiae[J] . Metab Eng, 2015, 29:124. [54] Gueldener U, Heinisch J, Koehler GJ, et al. A second set of loxp marker cassettes for cre-mediated multiple gene knockouts in budding yeast[J] . Nucleic Acids Res, 2002, 30(6):e23. [55] Redden H, Morse N, et al. The synthetic biology toolbox for tuning gene expression in yeast[J] . FEMS Yeast Res, 2014, 1:1-10. [56] Nevoigt E, Kohnke J, et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae[J] . Appl Environ Microbiol, 2006, 8:5266-5273. [57] Nevoigt E, Fischer C, Mucha O, et al. Engineering promoter regulation[J] . Biotechnol Bioeng, 2007, 96(3):550-558. [58] 张旭, 王晶晶, 刘建平. 基于启动子和宿主改造的酿酒酵母表达系统优化研究[J] . 中国生物工程杂志, 2015(1):61-66. [59] Jensen PR, Hammer K. Artificial promoters for metabolic optimization[J] . Biotechnol Bioeng, 2015, 58(2-3):191-195. [60] Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1(rap1)using an altered DNA-binding specificity variant[J] . Journal of Biological Chemistry, 2017, 292(14):5705-5723. [61] Jeppsson M, Johansson B, Jensen PR, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains[J] . Yeast, 2003, 20(15):1263. [62] Rich MS, Payen C, et al. Comprehensive analysis of the sul1 prom-oter of Saccharomyces cerevisiae[J] . Genetics, 2016, 1:191. [63] Blazeck J, Garg R, Reed B, et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J] . Biotechnol Bioeng, 2012, 109(11):2884-2895. [64] Ruohonen L, Penttil? M, Ker?nen S. Optimization of bacillus alpha-amylase production by Saccharomyces cerevisiae[J] . Yeast, 1991, 7(4):337-346. [65] Ruohonen L, Aalto MK, Ker?nen S. Modifications to the adh1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins[J] . J Biotechnol, 1995, 3:193-203. [66] Denis CL, Ferguson J, Young ET. Mrna levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source[J] . Journal of Biological Chemistry, 1983, 258(2):1165-1171. [67] Wang S, Cheng G, Joshua C, et al. Furfural tolerance and detoxification mechanism in candida tropicalis[J] . Biotechnol Biofuels, 2016, 9(1):250. [68] Kim S, Lee K, Bae SJ, et al. Promoters inducible by aromatic amino acids and γ-aminobutyrate(gaba)for metabolic engineering applications in Saccharomyces cerevisiae[J] . Appl Microbiol Biotechnol, 2015, 99(6):2705-2714. [69] Leavitt JM, Tong A, Tong J, et al. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae[J] . Biotechnol J, 2016, 11(7):866. [70] Malakar P, Venkatesh KV. Gal regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose[J] . Fems Yeast Research, 2014, 14(2):346-356. [71] 唐瑞琪, 熊亮, 白凤武, 等. 酿酒酵母人工杂合启动子与天然启动子活性比较[J] . 生物技术通报, 2017(1):120-128. [72] Garí E, Piedrafita L, Aldea M, et al. A set of vectors with a tetracyc-line-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae[J] . Yeast, 2010, 13(9):837-848. [73] Wawiórka L, Molestak E, Szajwaj M, et al. The multiplication of ribosomal p-stalk proteins contributes to the fidelity of translation[J] . Mol Cell Biol, 2017, 37(17). Plie00060-17. [74] Revankar SG, Fu J, et al. Cloning and characterization of the lanos-terol 14α-demethylase(erg11)gene in cryptococcus neoformans[J] . Biochem Biophys Res Commun, 2004, 324(2):719-728. [75] Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast[J] . Febs Letters, 2012, 586(15):2112. [76] Bellí G, Garí E, Piedrafita L, et al. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast[J] . Nucleic Acids Res, 1998, 26(4):942-947. [77] Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system[J] . Nature Biotechnology, 2002, 20(10):1041-1044. [78] Mcisaac RS, Gibney PA, Chandran SS, et al. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae[J] . Nucleic Acids Res, 2014, 6:e48. [79] Hector RE, Mertens JA. A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts[J] . Molecular Biotechnology, 2017, 59(1):24-33. [80] 高义平, 赵和, 吕孟雨, 等. 易错PCR研究进展及应用[J] . 核农学报, 2013, 27(5):607-612. [81] Jeppsson M, Johansson B, Jensen PR, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains[J] . Yeast, 2003, 20(15):1263-1272. [82] Wang S, Cheng G, Joshua C, et al. Furfural tolerance and detoxification mechanism incandida tropicalis[J] . Biotechnol Biofuels, 2016, 9(1):250. [83] 余君涵, 马雯雯, 王智文, 等. 人工合成启动子文库研究进展[J] . 微生物学通报, 2016, 43(1):198-204. [84] Zong Y, Zhang HM, Cheng L, et al. Insulated transcriptional elements enable precise design of genetic circuits[J] . Nature Communications, 2017, 8(1):52. [85] Rohlhill J, Sandoval NR, Papoutsakis ET. Sort-seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated escherichia coli growth on methanol[J] . Acs Synthetic Biology, 2017, 6(8):1584-1595. |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[4] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[5] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[6] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[7] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[8] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[9] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[10] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[11] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[12] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[13] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[14] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[15] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||