生物技术通报 ›› 2020, Vol. 36 ›› Issue (4): 131-143.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0699
纪超1, 王晓辉2, 刘训理1
收稿日期:
2019-08-03
出版日期:
2020-04-26
发布日期:
2020-04-30
作者简介:
纪超,男,博士研究生,研究方向:微生物生态;E-máil:jicháo91@foxmáil.com
基金资助:
JI Cháo1, WáNG Xiáo-hui2, LIU Xun-li1
Received:
2019-08-03
Published:
2020-04-26
Online:
2020-04-30
摘要: 盐胁迫是限制干旱和半干旱地区作物生产的主要非生物胁迫之一,严重影响作物的生长发育,植物促生菌(Plánt growth-promoting bácteriá,PGPB)可有效减轻植物的盐胁迫损伤,合理施用PGPB是盐胁迫下促进作物生长的重要途径。本文从盐胁迫环境下PGPB在调节植物激素内稳态、促进养分吸收和诱导植物产生系统耐受性等方面的作用阐述了PGPB提高植物耐盐性、减轻植物胁迫损伤的作用机制。讨论了能够在植物根际稳定定殖并在盐生环境下稳定保持PGP活性的功能菌株对未来农业的可持续发展的重要意义,同时,对该研究方向的重难点和未来的发展趋势作出展望。
纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4): 131-143.
JI Cháo, WáNG Xiáo-hui, LIU Xun-li. Reseárch Progress on the áction Mechánism of Plánt Growth-promoting Bácteriá Under Sált Stress[J]. Biotechnology Bulletin, 2020, 36(4): 131-143.
[1] Zhu F, Qu L, Hong X, et al.Isolation and characterization of a phosphate-solubilizing halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China[J]. Evid Based Complement Alternat Med, 2011, 2011:615032. [2] Acquaah G, Principles of plant genetics and breeding[M]. Blackwell Publishing, 2007. [3] Dodd L, Pérezalfocea F, Microbial amelioration of crop salinity stress[J]. Journal of Experimental Botany, 2012, 63(9):3415-3428. [4] James R, Blake C, Byrt C, et al.Major genes for Na+ exclusion, Nax1 and Nax2(wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions[J]. Journal of Experimental Botany, 2011, 62(8):2939-2947. [5] Rozema J, Flowers T, Crops for a salinized world[J]. Science, 2008, 322(5907):1478-1480. [6] Afrasyab R, Richarda J, Kazem P, et al.Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil[J]. Functional Plant Biology, 2010, 37(3):255-263. [7] Zhu J.Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(53):247-273. [8] Evelin H, Kapoor R, Giri B.Arbuscular mycorrhizal fungi in alleviation of salt stress:a review[J]. Ann Bot, 2009, 104(7):1263-1280. [9] Zhu J.Plant salt tolerance[J]. Trends in Plant Science, 2001, 6 (2):66-71. [10] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1):651-681. [11] Desgarennes D, Garrido E, Torresgomez M, et al.Diazotrophic potential among bacterial communities associated with wild and cultivated agaves[J]. FEMS Microbiology Ecology, 2015, 90(3):844-857. [12] Bisseling T, Dang J, Schulzelefert P.Next-generation communication[J]. Science, 2009, 324(5928):691. [13] Islam F, Yasmeen T, Arif M, et al.Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility[J]. Plant Growth Regulation, 2016, 80(1):23-36. [14] Yuan Q, Druzhinina I, Pan X, et al.Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7):1245-1259. [15] Etesami H, Beattie G.Plant-Microbe interactions in adaptation of agricultural crops to abiotic stress conditions[M]. //Kumar V, Kumar M, Sharma S, et al. Probiotics and Plant Health. Springer, 2017, 163-200. [16] Etesami H, Beattie G.Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops[J]. Frontiers in Microbiology, 2018, 9:148. [17] Shukla P, Agarwal P, Jha B.Improved salinity tolerance of Arachis hypogaea(L.)by the interaction of halotolerant plant-growth-promoting rhizobacteria[J]. Journal of Plant Growth Regulation, 2012, 31(2):195-206. [18] Jordan V, Guilhem D, Marie-Lara B, et al.Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science, 2013, 4:356. [19] Goswami D, Dhandhukia P, Patel P, et al.Screening of PGPR from saline desert of Kutch:Growth promotion in Arachis hypogea by Bacillus licheniformis A2[J]. Microbiological Research, 2014, 169(1):66-75. [20] Timmusk S, Abd El-Daim I, Copolovici L, et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments:enhanced biomass production and reduced emissions of stress volatiles[J]. PLoS One, 2014, 9(5):e96086. [21] Kaushal M, Wani S.Rhizobacterial-plant interactions:Strategies ensuring plant growth promotion under drought and salinity stress[J]. Agriculture Ecosystems & Environment, 2016, 231(1):68-78. [22] Banaei-Asl F, Bandehagh A, Uliaei E, et al.Proteomic analysis of canola root inoculated with bacteria under salt stress[J]. Journal of Proteomics, 2015, 124:88-111. [23] Bhattacharyya P, Jha D.Plant growth-promoting rhizobacteria(PGPR):emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28(4):1327-1350. [24] Cheng Z, Woody O, Mcconkey B, et al.Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome[J]. Applied Soil Ecology, 2012, 61:255-263. [25] Pierik R, Sasidharan R, Voesenek L.Growth control by ethylene:adjusting phenotypes to the environment[J]. Journal of Plant Growth Regulation, 2007, 26(2):188-200. [26] Ma W, Penrose D, Glick B.Strategies used by rhizobia to lower plant ethylene levels and increase nodulation[J]. Canadian Journal of Microbiology, 2002, 48(11):947-54. [27] Kausar R, Shahzad S.Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress[J]. J Agric Soc Sci, 2006. [28] Camilios-Neto D, Bonato P, Wassem R, et al.Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes[J]. BMC Genomics, 2014, 15(1):378. [29] Zhou N, Zhao S, Tian C. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet(Beta vulgaris L.)under salt stress[J]. FEMS Microbiology Letters, 2017, 364(11):fnx091. [30] Ali S, Charles T, Glick B.Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase[J]. Plant Physiology & Biochemistry, 2014, 80(2):160-167. [31] Bruto M, Prigentcombaret C, Muller D, et al.Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria[J]. Sci Rep, 2014, 4:6261. [32] Hadiarto T, Tran L.Progress studies of drought-responsive genes in rice[J]. Plant Cell Reports, 2011, 30(3):297-310. [33] Dunlap J, Binzel M.NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid[J]. Plant Physiology, 1996, 112(1):379-384. [34] Steffen L, Gerd J, Ive D.The evolving complexity of the auxin pathway[J]. Plant Cell, 2008, 20(7):1738-1746. [35] Wang Y, Li K, Li X.Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2009, 166(15):1637-1645. [36] Gholamali A, Saeed Y.Effect of auxin and salt stress(NaCl)on seed germination of wheat cultivars(Triticum aestivum L.)[J]. Pakistan Journal of Biological Sciences, 2007, 10(15):2557-2561. [37] Dodd I, Zinovkina N, Safronova V, et al.Rhizobacterial mediation of plant hormone status[J]. Annals of Applied Biology, 2010, 157(3):361-379. [38] Tiwari S, Singh P, Tiwari R, et al.Salt-tolerant rhizobacteria-mediated induced tolerance in wheat(Triticum aestivum)and chemical diversity in rhizosphere enhance plant growth[J]. Biology & Fertility of Soils, 2011, 47(8):907-916. [39] Sharma S, Kulkarni J, Jha B.Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut[J]. Frontiers in Microbiology, 2016, 7:1600. [40] Zhao S, Zhou N, Zhao Z, et al.Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress[J]. Current Microbiology, 2016, 73(4):1-8. [41] El-Azeem S, Elwan M, Sung J, et al.Alleviation of salt stress in eggplant(Solanum melongena L.)by plant-growth-promoting rhizobacteria[J]. Communications in Soil Science & Plant Analysis, 2012, 43(9):1303-1315. [42] Sah S, Reddy K, Li J.Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontiers in Plant Science, 2016, 7:571. [43] Raghavendra A, Gonugunta V, Christmann A, et al.ABA perception and signalling[J]. Trends in Plant Science, 2010, 15(7):395-401. [44] He T, Cramer G.Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species[J]. Plant & Soil, 1996, 179(1):25-33. [45] Cabot C, Sibole J, Barceló J, et al.Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L.[J]. Journal of Plant Growth Regulation, 2009, 28(2):187-192. [46] Naz I, Bano A, Ulhassan T.Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L[J]. African Journal of Biotechnology, 2009, 8(21):5762-5768. [47] Etesami H, Beattie G.Plant-Microbe interactions in adaptation of agricultural crops to abiotic stress conditions[M]// Probiotics and Plant Health. Springer Singapore, 2017. [48] Jiang F, Chen L, Belimov A, et al.Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum[J]. Journal of Experimental Botany, 2012, 63(18):6421. [49] Salomon M, Bottini R, Cohen A, et al.Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine[J]. Physiologia Plantarum, 2014, 151(4):359-374. [50] Cohen A, Bottini R, Pontin M, et al.Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels[J]. Physiologia Plantarum, 2015, 153(1):79-90. [51] Sun T, Gubler F.Molecular mechanism of gibberellins signalling in plants[J]. Annu Rev Plant Biol, 2004, 55(1):197-223. [52] Davière J, Achard P.Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151. [53] Wang G, Feng Q, Xu Z, et al.Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot[J]. BMC Plant Biology, 2015, 15(1):290. [54] Maggio A, Barbieri G, Raimondi G, et al.Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity[J]. Journal of Plant Growth Regulation, 2010, 29(1):63-72. [55] 牛宋芳, 王利娟, 刘秉儒. 赤霉素对盐胁迫下红砂种子萌发的影响[J]. 草业学报, 2017, 26(6):89-97. [56] Javid N, Sorooshzadeh A, Moradi F, et al.The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 32(5):726. [57] Bottini R, Cassán F, Piccoli P.Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase[J]. Applied Microbiology & Biotechnology, 2004, 65(5):497-503. [58] Giljae J, Youngmog K, Jungtae K, et al.Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers[J]. Journal of Microbiology, 2005, 43(6):510. [59] Kang S, Khan A, You Y, et al.Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth[J]. J Microbiol Biotechnol, 2014, 24(1):106-112. [60] Kucey R.Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars[J]. Journal of Applied Microbiology, 2010, 64(3):187-196. [61] Shahzad R, Waqas M, Khan A, et al.Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa[J]. Plant Physiology & Biochemistry, 2016, 106:236-243. [62] Kang S, Khan A, Hamayun M, et al.Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones[J]. Journal of Microbiology, 2012, 50(60):902-909. [63] Ahmad P, Rasool S, Gul A, et al.Jasmonates:Multifunctional roles in stress tolerance[J]. Frontiers in Plant Science, 2016, 7(5):813. [64] Kazan K, Manners J.JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1):22-31. [65] El-Tayeb M.Response of barley grains to the interactive e. ect of salinity and salicylic acid[J]. Plant Growth Regulation, 2005, 45(3):215-224. [66] Pancheva T, Popova L, Uzunova A.Effects of salicylic acid on growth and photosynthesis in barley plants[J]. Journal of Plant Physiology, 1996, 149(S 1-2):57-63. [67] Forchetti G, Masciarelli O, Alemano S, et al.Endophytic bacteria in sunflower(Helianthus annuus L.):isolation, characterization, and production of jasmonates and abscisic acid in culture medium[J]. Applied Microbiology & Biotechnology, 2007, 76(5):1145-1152. [68] Chen Y, Fan J, Du L, et al.The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil[J]. Applied Soil Ecology, 2014, 84:235-244. [69] Li Y, Gu Y, Li J, et al.Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew[J]. Frontiers in Microbiology, 2015, 6:883. [70] Bordiec S, Paquis S, Lacroix H, et al.Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions[J]. Journal of Experimental Botany, 2011, 62(2):595-603. [71] 李启任, 王东. 外源生长调节物质对烟草茎髓愈伤组织形成和愈伤组织器官发生的作用[J]. 云南大学学报:自然科学版, 1998(S4):555-559. [72] Hwang I, Sheen J.Two-component circuitry in Arabidopsis cytoki-nin signal transduction[J]. Nature, 2001, 413(6854):383-389. [73] O’Brien J, Eva B. Cytokinin cross-talking during biotic and abiotic stress responses[J]. Frontiers in Plant Science, 2013, 4(1):451. [74] Salamone I, Hynes R, Nelson L.Role of cytokinins in plant growth promotion by rhizosphere bacteria[J]. Pgpr Biocontrol & Biofertilization, 2005, 173-195. [75] Kakimoto T.Perception and signal transduction of cytokinins[J]. Annual Review of Plant Biology, 2003, 54(1):605-627. [76] Brandstatter I, Kieber J.Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in arabidopsis[J]. The Plant Cell, 1998, 10:1009-1019. [77] Arkhipova T, Veselov S, Melentiev A, et al.Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants[J]. Plant & Soil, 2005, 272(1/2):201-209. [78] Liu F, Xing S, Ma H, et al.Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings[J]. Applied Microbiology & Biotechnology, 2013, 97(20):9155-9164. [79] Arkhipova T, Prinsen E, Veselov S, et al.Cytokinin producing bacteria enhance plant growth in drying soil[J]. Plant & Soil, 2007, 292(1-2):305-315. [80] Goldstein A.Bacterial solubilization of mineral phosphates:Historical perspective and future prospects[J]. American Journal of Alternative Agriculture, 2009, 1(1):51-57. [81] Giri B, Kapoor R, Mukerji K.Improved tolerance of Acacia nilotica to salt stress by Arbuscular Mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues[J]. Microbial Ecology, 2007, 54(4):753-760. [82] El-Tarabily K, Youssef T.Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions[J]. Plant & Soil, 2010, 332(1-2):147-162. [83] Mayak S, Tirosh T, Glick B.Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology & Biochemistry, 2004, 42(6):565-572. [84] Bashan Y, Moreno M, Troyo E.Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp.[J]. Biology & Fertility of Soils, 2000, 32(4):265-272. [85] Banerjee S, Palit R, Sengupta C, et al.Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere[J]. Australian Journal of Crop Science, 2010, 4(6):378-383. [86] Egamberdieva D, Wirth S, Jabborova D, et al.Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture[J]. Journal of Plant Interactions, 2017, 12(1):100-107. [87] Kobayashi T, Nishizawa N.Iron uptake, translocation, and regulation in higher plants[J]. Annual Review of Plant Biology, 2012, 63(1):131. [88] Abbas G, Saqib M, Akhtar J, et al.Interactive effects of salinity and iron deficiency on different rice genotypes[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(2):306-311. [89] 贾国东, 钟佐燊. 铁的环境地球化学综述[J]. 环境工程学报, 1999(5):74-84. [90] Masalha J, Kosegarten H, Elmaci, et al. The central role of microbial activity for iron acquisition in maize and sunflower[J]. Biology & Fertility of Soils, 2000, 30(5-6):433-439. [91] Navarro-Torre S, Barcia-Piedras J, Mateos-Naranjo E, et al.Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance[J]. Plant Biol, 2017, 19(2):249-256. [92] Ullah S, Bano A.Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize(Zea mays L.)under induced soil salinity[J]. Canadian Journal of Microbiology, 2015, 61(4):307-313. [93] Compant S, Duffy B, Clement C, et al.Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action, and future prospects[J]. Applied & Environmental Microbiology, 2005, 71(9):4951-4959. [94] 王英丽, 林庆祺, 李宇, 等. 产铁载体根际菌在植物修复重金属污染土壤中的应用潜力[J]. 应用生态学报, 2013, 24(7):2081-2088. [95] Ullrich W.Salinity and nitrogen nutrition[M]. Salinity:Environment-Plants-Molecules. Springer Netherlands, 2004. [96] Naidoo G.Effects of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina(Forsk. )Vierh[J]. New Phytologist, 2010, 107(2):317-325. [97] Rueda-Puente E, Castellanos-Cervantes T, Díaz J, et al.Bacterial community of rhizosphere associated to the annual halophyte Salicornia bigelovii(Torr. )[J]. Terra Latinoamericana, 2010, 28(4):345-353. [98] Jha B, Gontia I, Hartmann A.The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential[J]. Plant & Soil, 2012, 356(1-2):265-277. [99] Yan N, Marschner P, Cao W, et al.Influence of salinity and water content on soil microorganisms[J]. International Soil & Water Conservation Research, 2015, 3(4):316-323. [100] Ozawa T, Wu J, Fujii S.Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort[J]. Soil Science & Plant Nutrition, 2007, 53(1):12-16. [101] Ruedapuente E, Castellanos T, Troyodiéguez E, et al.Effects of a nitrogen-fixing indigenous bacterium(Klebsiella pneumoniae)on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments[J].Journal of Agronomy & Crop Science, 2010, 189(5):323-332. [102] 张梦如, 杨玉梅, 成蕴秀, 等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9):1916-1926. [103] Miller G, Suzuki N, CiftciYilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4):453-467. [104] 张美月, 陶秀娟, 樊建民, 等. 磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响[J]. 河北农业大学学报, 2009, 32(4):71-75. [105] Jha Y, Subramanian R.PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity[J]. Physiology & Molecular Biology of Plants, 2014, 20(2):201-207. [106] Creus C, Sueldo R, Barassi C.Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field[J]. Canadian Journal of Botany, 2004, 82(2):273-281. [107] Antón J.Compatible solute[M]. Springer Berlin Heidelberg, 2011. [108] Kohler J, Hernández J, Caravaca F, et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J]. Environmental & Experimental Botany, 2009, 65(2):245-252. [109] Ashraf M, Foolad M.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2):206-216. [110] Mohamed H, Gomaa E.Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants(Raphanus sativus)under NaCl stress[J]. Photosynthetica, 2012, 50(2):263-272. [111] Zarea M, Hajinia S, Karimi N, et al.Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl[J]. Soil Biology & Biochemistry, 2012, 45(45):139-146. [112] Upadhyay S, Singh J, Saxena A, et al.Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions [J]. Plant Biol, 2012, 14(4):605-611. [113] Furusho K, Yoshizawa T, Shoji S.Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch[J].Neurobiology of Disease, 2005, 20(1):170-178. [114] Muhammad A.Role of exo-polysaccharide producing bacteria in improving fertility of the salt-affected soil[J]. International Journal of Environmental Science & Technology, 2007, 3(1):43-51. [115] Batool R, Hasnain S.Growth stimulatory effects of Enterobacter and Serratia isolated from biofilms on plant growth and soil aggregation[J]. Biotechnology, 2005, 4(4):347-353. [116] Nunkaew T, Kantachote D, Nitoda T, et al.Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions[J]. Carbohydrate Polymers, 2015, 115:334-341. [117] Upadhyay S, Singh J, Singh D.Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition[J]. Pedosphere, 2011, 21(2):214-222. [118] Qurashi A, Sabri A.Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3):1183-1191. [119] Ruppel S, Franken P, Witzel K.Properties of the halophyte microbiome and their implications for plant salt tolerance[J]. Functional Plant Biology, 2013, 40(8-9):3113-3116. [120] Khan M, Boër B, Ȫzturk M, et al.Erratum:Sabkha ecosystems volume V:The Americas[M]//. Sabkha Ecosystems. Springer International Publishing, 2016. [121] Moshelion M, Halperin O, Wallach R, et al.Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants:crop water-use efficiency, growth and yield[J]. Plant Cell & Environment, 2015, 38(9):1785. [122] Mosimann M, Goshima S, Wenzler T, et al.A Trk/HKT-type K+ transporter from Trypanosoma brucei[J]. Eukaryot Cell, 2010, 9(4):539-546. [123] Zhang H, Kim M, Sun Y, et al.Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Mol Plant Microbe Interact, 2008, 21(6):737-744. [124] Pahm L, Cmj P, van Loon L, et al. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology, 1998, 36(1):453-483. [125] Lugtenberg B, Kamilova F.Plant-growth-promoting rhizobacteria [J]. Annual Review of Microbiology, 2009, 63(1):541-556. [126] Singh R, Jha P.The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat(Triticum aestivum L.)[J]. PLoS One, 2016, 11(6):e0155026. [127] Hung R, Lee S, Bennett J.Fungal volatile organic compounds and their role in ecosystems[J]. Applied Microbiology & Biotechnology, 2015, 99(8):3395-3405. [128] Vaishnav A, Kumari S, Jain S, et al.Putative bacterial volatile-mediated growth in soybean(Glycine max L. Merrill)and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology, 2015, 119(2):539-551. [129] Ledger T, Rojas S, Timmermann T, et al.Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana[J]. Frontiers in Microbiology, 2016, 7(331):1838. [130] Husson E, Hadad C, Huet G, et al.The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies[J]. Green Chemistry, 2017, 19(17):4122. [131] Vaddepalli P, Fulton L, Wieland J, et al.The cell wall-localized atypical β-1, 3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana[J]. Development, 2017, 144(12):2259-2269. [132] Egamberdieva D.Pseudomonas chlororaphis:a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions[J]. Acta Physiologiae Plantarum, 2012, 34(2):751-756. [133] Paul D, Nair S.Stress adaptations in a plant growth promoting rhizobacterium(PGPR)with increasing salinity in the coastal agricultural soils[J]. Journal of Basic Microbiology[J], 2010, 48(5):378-384. |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[4] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[5] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[6] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[7] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[8] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[9] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[10] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[11] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[12] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[13] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[14] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[15] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||