生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 124-131.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0149
收稿日期:
2020-02-05
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
谢果珍,女,硕士,研究方向:中医药微生态;E-mail: 基金资助:
XIE Guo-zhen(), TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin()
Received:
2020-02-05
Published:
2021-12-26
Online:
2022-01-19
摘要:
为揭示七味白术散治疗菌群失调腹泻的物质基础,从七味白术散中提取总苷,探讨了不同剂量的七味白术散总苷对菌群失调腹泻小鼠肠道微生态的影响。结果显示七味白术散总苷有助于恢复菌群失调腹泻小鼠的摄食量及体重。中剂量的七味白术散总苷使菌群失调腹泻小鼠的脾脏指数回到正常水平。不同剂量的七味白术散总苷均可促进双歧杆菌、乳酸菌及大肠杆菌的增殖,其中低剂量的七味白术散总苷对双歧杆菌(P<0.01)及乳酸菌(P<0.05)的增殖效果显著。不同剂量的七味白术散总苷可提高菌群失调腹泻小鼠肠道微生物活度(P<0.01)、乳糖酶(P<0.01)及蔗糖酶活性(P<0.01或P<0.05)。研究表明七味白术散总苷对菌群失调腹泻小鼠肠道有益菌、微生物活度及酶活性的影响与水煎液一致,是七味白术散治疗菌群失调腹泻的重要药效成分。
谢果珍, 唐圆, 吴仪, 黄莉莉, 谭周进. 七味白术散总苷对菌群失调腹泻小鼠肠道微生物及酶活性的影响[J]. 生物技术通报, 2021, 37(12): 124-131.
XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice[J]. Biotechnology Bulletin, 2021, 37(12): 124-131.
图1 七味白术散总苷对菌群失调腹泻小鼠摄食量的影响 N:正常组;R:自然恢复组;TW:七味白术散水煎液组;TL:七味白术散总苷低剂量组;TM:七味白术散总苷中剂量组;TH:七味白术散总苷高剂量组,下同。横坐标时期1:适应期;2:造模期;3:治疗期
Fig. 1 Effects of total glycosides of QWBZP on the food intake of mice with dysbacteria-diarrhea N:Normal group. R:Recovery group. TW:QWBZP(Qiwei Baizhu Powder)decoction group. TL:Low-dose glycosides group. TM:Medium-dose glycosides group. TH:High-dose glycosides group,the same below. In horizontal ordinate,1:Adaptive phase. 2:Modeling phase. 3:Treatment phase
分组Group | 初始体重Initial weight/g | 增重率 Weight gain rate/% | |||
---|---|---|---|---|---|
适应期Adaptive phase | 造模期Modeling phase | 治疗期Treatment phase | |||
N | 18.57 ± 0.95 | 35.19 ± 7.12 | 20.59 ± 7.55 | 6.80 ± 2.69 | |
R | 18.34 ± 0.64 | 34.66 ± 4.94 | 12.20 ± 4.12 | 14.55 ± 2.53 A | |
TW | 18.20 ± 0.48 | 38.78 ± 2.84 | 14.35 ± 6.09 | 11.36 ± 8.66 | |
TL | 18.17 ± 0.41 | 34.95 ± 1.41 | 15.43 ± 8.54 | 9.92 ± 3.36 | |
TM | 17.81 ± 0.83 | 34.74 ± 3.49 | 15.11 ± 6.55 | 11.18 ± 9.78 | |
TH | 18.01 ± 0.74 | 37.18 ± 4.56 | 13.36 ± 7.34 | 9.70 ± 10.13 |
表1 七味白术散总苷对菌群失调腹泻小鼠体重的影响
Table 1 Effects of total glycosides of QWBZP on the body weight of mice with dysbacteria-diarrhea(n = 5)
分组Group | 初始体重Initial weight/g | 增重率 Weight gain rate/% | |||
---|---|---|---|---|---|
适应期Adaptive phase | 造模期Modeling phase | 治疗期Treatment phase | |||
N | 18.57 ± 0.95 | 35.19 ± 7.12 | 20.59 ± 7.55 | 6.80 ± 2.69 | |
R | 18.34 ± 0.64 | 34.66 ± 4.94 | 12.20 ± 4.12 | 14.55 ± 2.53 A | |
TW | 18.20 ± 0.48 | 38.78 ± 2.84 | 14.35 ± 6.09 | 11.36 ± 8.66 | |
TL | 18.17 ± 0.41 | 34.95 ± 1.41 | 15.43 ± 8.54 | 9.92 ± 3.36 | |
TM | 17.81 ± 0.83 | 34.74 ± 3.49 | 15.11 ± 6.55 | 11.18 ± 9.78 | |
TH | 18.01 ± 0.74 | 37.18 ± 4.56 | 13.36 ± 7.34 | 9.70 ± 10.13 |
分组 Group | 脾脏指数 Spleen index/% | 胸腺指数 Thymus index/% | 肝脏指数 Liver index/% |
---|---|---|---|
N | 0.30 ± 0.06 | 0.38 ± 0.04 | 5.57 ± 0.29 |
R | 0.38 ± 0.04 | 0.37 ± 0.08 | 5.30 ± 0.29 |
TW | 0.31 ± 0.03 b | 0.41 ± 0.03 | 5.21 ± 0.69 |
TL | 0.39 ± 0.10 | 0.35 ± 0.07 | 5.16 ± 0.45 |
TM | 0.33 ± 0.05 | 0.42 ± 0.05 | 5.08 ± 0.36 |
TH | 0.41 ± 0.03 AC | 0.41 ± 0.05 | 5.58 ± 0.34 |
表2 七味白术散总苷对菌群失调腹泻小鼠脏器指数的影响
Table 2 Effects of total glycosides of QWBZP on the visceral index of mice with dysbacteria-diarrhea(n = 5)
分组 Group | 脾脏指数 Spleen index/% | 胸腺指数 Thymus index/% | 肝脏指数 Liver index/% |
---|---|---|---|
N | 0.30 ± 0.06 | 0.38 ± 0.04 | 5.57 ± 0.29 |
R | 0.38 ± 0.04 | 0.37 ± 0.08 | 5.30 ± 0.29 |
TW | 0.31 ± 0.03 b | 0.41 ± 0.03 | 5.21 ± 0.69 |
TL | 0.39 ± 0.10 | 0.35 ± 0.07 | 5.16 ± 0.45 |
TM | 0.33 ± 0.05 | 0.42 ± 0.05 | 5.08 ± 0.36 |
TH | 0.41 ± 0.03 AC | 0.41 ± 0.05 | 5.58 ± 0.34 |
分组 Group | 细菌 Bacteria /(106 CFU·g-1) | 大肠杆菌 Escherichia coli /(106 CFU·g-1) | 双歧杆菌 Bifidobacterium /(107 CFU·g-1) | 乳酸菌 Lactobacillus /(107 CFU·g-1) |
---|---|---|---|---|
N | 1.10 ± 0. 10 | 0.81 ± 0.07 | 2.79 ± 0.82 | 4.53 ± 1.14 |
R | 2.63 ± 0.21 A | 0.97 ± 0.06 a | 0.57 ± 0.08 a | 0.65 ± 0.09 a |
TW | 2.04 ± 0.15 Ab | 0.84 ± 0.02 b | 0.60 ± 0.05 a | 1.22 ± 0.78 a |
TL | 0.34 ± 0.11 ABC | 9.09 ± 0.30 ABC | 2.40 ± 0.04 BC | 8.20 ± 2.80 bc |
TM | 15.37 ± 0.50 ABCD | 2.90 ± 0.07 ABCD | 2.70 ± 1.99 | 5.37 ± 0.35 BC |
TH | 2.83 ± 1.20 dE | 1.21 ± 0.07 AbCDE | 2.80 ± 1.84 | 0.96 ± 0.07 aBdE |
表3 七味白术散总苷对菌群失调腹泻小鼠肠道微生物的影响
Table 3 Effects of total glycosides of QWBZP on the intestinal microbiota of mice with dysbacteria-diarrhea(n = 3)
分组 Group | 细菌 Bacteria /(106 CFU·g-1) | 大肠杆菌 Escherichia coli /(106 CFU·g-1) | 双歧杆菌 Bifidobacterium /(107 CFU·g-1) | 乳酸菌 Lactobacillus /(107 CFU·g-1) |
---|---|---|---|---|
N | 1.10 ± 0. 10 | 0.81 ± 0.07 | 2.79 ± 0.82 | 4.53 ± 1.14 |
R | 2.63 ± 0.21 A | 0.97 ± 0.06 a | 0.57 ± 0.08 a | 0.65 ± 0.09 a |
TW | 2.04 ± 0.15 Ab | 0.84 ± 0.02 b | 0.60 ± 0.05 a | 1.22 ± 0.78 a |
TL | 0.34 ± 0.11 ABC | 9.09 ± 0.30 ABC | 2.40 ± 0.04 BC | 8.20 ± 2.80 bc |
TM | 15.37 ± 0.50 ABCD | 2.90 ± 0.07 ABCD | 2.70 ± 1.99 | 5.37 ± 0.35 BC |
TH | 2.83 ± 1.20 dE | 1.21 ± 0.07 AbCDE | 2.80 ± 1.84 | 0.96 ± 0.07 aBdE |
图2 七味白术散总苷对菌群失调腹泻小鼠肠道微生物活度的影响
Fig. 2 Effects of total glycosides of QWBZP on the intes-tinal microbial activities of mice with dysbacteria-diarrhea(n=3)
[1] |
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans[J]. Cell, 2016, 164(3):337-340.
doi: 10.1016/j.cell.2016.01.013 pmid: 26824647 |
[2] |
Vernocchi P, del Chierico F, Putignani L. Gut microbiota metabolism and interaction with food components[J]. Int J Mol Sci, 2020, 21(10):3688.
doi: 10.3390/ijms21103688 URL |
[3] |
Savage N. The complex relationship between drugs and the microbiome[J]. Nature, 2020, 577(7792):S10-S11.
doi: 10.1038/d41586-020-00196-0 URL |
[4] |
Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J]. Med Res Rev, 2017, 37(5):1140-1185.
doi: 10.1002/med.2017.37.issue-5 URL |
[5] |
Haiser HJ, Turnbaugh PJ. Is it time for a metagenomic basis of therapeutics?[J]. Science, 2012, 336(6086):1253-1255.
doi: 10.1126/science.1224396 pmid: 22674325 |
[6] | Aitoro R, Paparo L, Amoroso A, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy[J]. Nutrients, 2017, 9(7):E672. |
[7] |
Qi YF, Kim S, Richards EM, et al. Gut microbiota:potential for a unifying hypojournal for prevention and treatment of hypertension[J]. Circ Res, 2017, 120(11):1724-1726.
doi: 10.1161/CIRCRESAHA.117.310734 URL |
[8] | 谢果珍, 唐圆, 姜珊, 等. 七味白术散总苷的提取工艺优化及体外抑菌活性初探[J]. 时珍国医国药, 2020, 31(6):1351-1354. |
Xie GZ, Tang Y, Jiang S, et al. Optimization of extracting process and antibacterial effect in vitro of total glycosides in Qiwei Baizhu powder[J]. Lishizhen Med Mater Med Res, 2020, 31(6):1351-1354. | |
[9] | 谭周进, 吴海, 刘富林, 等. 超微七味白术散对肠道微生物及酶活性的影响[J]. 生态学报, 2012, 32(21):6856-6863. |
Tan ZJ, Wu H, Liu FL, et al. Effect of ultra-micro powder qiweibaishusan on the intestinal microbiota and enzyme activities in mice[J]. Acta Ecol Sin, 2012, 32(21):6856-6863. | |
[10] | 惠华英, 申可佳, 李丹丹, 等. 七味白术散对抗生素所致腹泻小鼠肠道乳糖酶活性的影响[J]. 中国微生态学杂志, 2018, 30(10):1126-1129. |
Hui HY, Shen KJ, Li DD, et al. Influence of Qiwei Baizhu powder on the lactase activity in intestine of mice with diarrhea induced by antibiotics[J]. Chin J Microecol, 2018, 30(10):1126-1129. | |
[11] | 郭抗萧, 彭昕欣, 毛娅男, 等. 七味白术散对菌群失调腹泻小鼠肠道蔗糖酶活性的影响[J]. 中国微生态学杂志, 2019, 31(10):1130-1134. |
Guo KX, Peng XX, Mao YN, et al. Effect of Qiwei Baizhu San on intestinal sucrase activity in mice with diarrhea[J]. Chin J Microecol, 2019, 31(10):1130-1134. | |
[12] |
Wang QS, Wang YL, Zhang WY, et al. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea[J]. Food Funct, 2021, 12(5):2211-2224.
doi: 10.1039/D0FO02848G URL |
[13] |
Liang W, Zhou K, Jian P, et al. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis[J]. Front Pharmacol, 2021, 12:622841.
doi: 10.3389/fphar.2021.622841 URL |
[14] |
Zhu L, Xu LZ, Zhao S, et al. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis[J]. Appl Microbiol Biotechnol, 2020, 104(12):5449-5460.
doi: 10.1007/s00253-020-10527-w URL |
[15] |
Fan L, Peng Y, Wang J, et al. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors:bidirectional interaction of the phytochemicals and gut microbiota[J]. Phytomedicine, 2021, 83:153471.
doi: 10.1016/j.phymed.2021.153471 pmid: 33636477 |
[16] | 武密山. 方剂学[M]. 北京: 科学出版社, 2017. |
Wu MS. Chinese medical formulas[M]. Beijing: Science Press, 2017. | |
[17] | 惠华英. 葛根芩连汤对肠道湿热证泄泻小鼠疗效的微生态学机理研究[D]. 长沙:湖南中医药大学, 2020 |
Hui HY. Study on microecological mechanism of Ge-gen-qin-lian decoction on diarrheal mice with intestinal dampness-heat syndrome[D]. Changsha:Hunan University of Chinese Medicine, 2020. | |
[18] | Azad MAK, Sarker M, Li T, et al. Probiotic species in the modulation of gut microbiota:An overview[J]. Biomed Res Int, 2018, 2018:9478630. |
[19] | 刘海芳, 马军辉, 金辽, 等. 水稻土FDA水解酶活性的测定方法及应用[J]. 土壤学报, 2009, 46(2):365-367. |
Liu HF, Ma JH, Jin L, et al. Determination of activity of fda hydrolysis in paddy soils and its application in Taihu lake region[J]. Acta Pedol Sin, 2009, 46(2):365-367. | |
[20] | 唐圆, 吴仪, 惠华英, 等. 痛泻要方对肝气乘脾泄泻小鼠肠道微生物活度的影响[J]. 中国微生态学杂志, 2020, 32(1):17-20. |
Tang Y, Wu Y, Hui HY, et al. Effect of Tongxieyaofang prescription on intestinal microbial activity in mice with Ganqichenpi diarrhea[J]. Chin J Microecol, 2020, 32(1):17-20. | |
[21] |
Puertolas MV, Fifi AC. The role of disaccharidase deficiencies in functional abdominal pain disorders—A narrative review[J]. Nutrients, 2018, 10(12):1835-1846.
doi: 10.3390/nu10121835 URL |
[22] |
Sun JH, Lin JM, Parashette K, et al. Association of lymphocytic colitis and lactase deficiency in pediatric population[J]. Pathol Res Pract, 2015, 211(2):138-144.
doi: 10.1016/j.prp.2014.11.009 URL |
[1] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[2] | 王小琴, 黄银萍, 王蔚倩, 吴萍, 全舒. 含非天然氨基酸定点突变的MLL3SET蛋白表达与纯化[J]. 生物技术通报, 2022, 38(3): 194-202. |
[3] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
[4] | 武杞蔓, 田诗涵, 李昀烨, 潘英杰, 张颖. 微生物菌肥对设施黄瓜生长、产量及品质的影响[J]. 生物技术通报, 2022, 38(1): 125-131. |
[5] | 邱小宇, 刘作华, 齐仁立. 无菌猪和普通猪早期脂肪发育及脂肪组织基因转录表达的差异[J]. 生物技术通报, 2021, 37(5): 56-66. |
[6] | 陈晓雨, 张建, 张新亚, 唐雨婷, 邵钰晨, 罗志丹, 卢辰. 一种快速精确测定Tth DNA聚合酶活性的方法[J]. 生物技术通报, 2021, 37(5): 281-286. |
[7] | 陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226. |
[8] | 田庚, 高伟强, 陈晓波, 张春晓. 地衣芽孢杆菌KD-1β-甘露聚糖酶定点突变提高酶活性及稳定性[J]. 生物技术通报, 2021, 37(10): 100-109. |
[9] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[10] | 袁亮. 微生物碳酸酐酶诱导CaCO3沉淀的影响因素及生成机理[J]. 生物技术通报, 2020, 36(8): 79-68. |
[11] | 赵旭, 徐群, 侯彦茹, 李明宇, 张雅宁, 汪海. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235. |
[12] | 王晶, 戴东, 武书庚, 张海军, 齐广海. 鸡肠道微生物演替与早期定植的研究进展[J]. 生物技术通报, 2020, 36(2): 1-8. |
[13] | 黄海敏, 蓝秀万, 吴耀生. 肠道微生物与性激素相关疾病研究进展[J]. 生物技术通报, 2020, 36(2): 77-82. |
[14] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[15] | 殷金瑶, 王义, 徐良向, 朱利, 王晨, 刘文波, 缪卫国. 橡胶树白粉菌(HO-73)启动子WY172不同长度片段的克隆及表达活性分析[J]. 生物技术通报, 2020, 36(1): 29-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||