生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 236-243.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1231
冯连杰(), 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红()
收稿日期:
2020-10-04
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
冯连杰,男,硕士研究生,研究方向:植物生物技术;E-mail: 基金资助:
FENG Lian-jie(), AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong()
Received:
2020-10-04
Published:
2021-06-26
Online:
2021-07-08
摘要:
表皮毛作为大多数陆生植物表面的常见结构,不仅增强了植物抵抗干旱、紫外线和病虫害等不良环境因素的能力,其发育形成过程更是研究植物细胞命运分化的重要模型,因此对表皮毛发育调控机制的研究具有重要意义。目前,模式植物拟南芥表皮毛发育的一些关键基因已被克隆,表皮毛发育的调控机制也逐渐明了。但是有关水稻表皮毛发育机制的研究很大程度上不清楚,近年来一些水稻表皮毛相关基因陆续被鉴定或克隆,对其功能的研究也在不断深入。综述了水稻表皮毛相关基因的研究历程和进展,归纳了水稻表皮毛发育的调控途径,并展望了水稻表皮毛相关基因在光叶稻分子设计育种中的价值和应用前景。
冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243.
FENG Lian-jie, AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong. Progress in Research of Rice Trichome Related Genes[J]. Biotechnology Bulletin, 2021, 37(6): 236-243.
登录号基因 Gene ID | 基因名称 Gene name | 是否隆克 Clone or not | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因分离方法 Methods of gene isolation | 基因功能 Putative function | 染色体定位 Chromosome localization | 突变体表型 Mutant phenotype | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
LOC_Os05g 02730 | NUDA/GL-1;OsWOX3B;dep;GLR1;GL5 | 是 | WOX 3B蛋白 | 细胞核 | 图位克隆 | 调节表皮毛发育起始 | 5号染色体 | 叶片与颖壳无毛 | [8-11] |
LOC_Os06g 44750 | GL6;HL6 | 是 | AP2/ERF转录因子 | 细胞核 | 图位克隆 | 与OsWOX3B互作调节长毛伸长 | 6号染色体 | 叶片与颖壳长毛数量减少 | [12-14] |
LOC_Os05g 02754 | gl1 | 是 | 叶绿体跨膜蛋白 | 叶绿体 | 图位克隆 | 调控表皮毛发育的起始 | 5号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [18-19] |
LOC_Os06g 44860 | OsSPL10;GLR3 | 是 | SBP转录因子 | 细胞核 | 图位克隆 | 正调控表皮毛发育 | 6号染色体 | 叶片与颖壳无毛 | [16-17] |
LOC_Os01g 70100 | glr2 | 否 | 锌指转录因子 | 细胞核 | 调控长毛和微毛的形成 | 1号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [15] | |
LOC_Os06g 03660 | GLL | 是 | 过氧化物酶体蛋白 | 细胞核、细胞质和细胞膜 | 图位克隆 | 调节表皮细胞的分化 | 6号染色体 | 叶片无长毛,叶缘无毛,颖壳有毛 | [20] |
表1 水稻表皮毛发育已知基因
Table 1 Known genes for rice trichomes development
登录号基因 Gene ID | 基因名称 Gene name | 是否隆克 Clone or not | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因分离方法 Methods of gene isolation | 基因功能 Putative function | 染色体定位 Chromosome localization | 突变体表型 Mutant phenotype | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
LOC_Os05g 02730 | NUDA/GL-1;OsWOX3B;dep;GLR1;GL5 | 是 | WOX 3B蛋白 | 细胞核 | 图位克隆 | 调节表皮毛发育起始 | 5号染色体 | 叶片与颖壳无毛 | [8-11] |
LOC_Os06g 44750 | GL6;HL6 | 是 | AP2/ERF转录因子 | 细胞核 | 图位克隆 | 与OsWOX3B互作调节长毛伸长 | 6号染色体 | 叶片与颖壳长毛数量减少 | [12-14] |
LOC_Os05g 02754 | gl1 | 是 | 叶绿体跨膜蛋白 | 叶绿体 | 图位克隆 | 调控表皮毛发育的起始 | 5号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [18-19] |
LOC_Os06g 44860 | OsSPL10;GLR3 | 是 | SBP转录因子 | 细胞核 | 图位克隆 | 正调控表皮毛发育 | 6号染色体 | 叶片与颖壳无毛 | [16-17] |
LOC_Os01g 70100 | glr2 | 否 | 锌指转录因子 | 细胞核 | 调控长毛和微毛的形成 | 1号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [15] | |
LOC_Os06g 03660 | GLL | 是 | 过氧化物酶体蛋白 | 细胞核、细胞质和细胞膜 | 图位克隆 | 调节表皮细胞的分化 | 6号染色体 | 叶片无长毛,叶缘无毛,颖壳有毛 | [20] |
[1] | Martin H. Plant trichomes:a model for cell differentiation[J]. Nat Rev Mol Cell Biol, 2004, 5(6):471-480. |
[2] |
Liu H, Liu SB, Jiao JJ, et al. Trichomes as a natural biophysical barrier for plants and their bioinspired applications[J]. Soft Matter, 2017, 13(30):5096-5106.
doi: 10.1039/C7SM00622E URL |
[3] |
Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends Plant Sci, 2000, 5(5):214-219.
pmid: 10785667 |
[4] | 徐是雄, 徐雪宾. 稻的形态与解剖[M]. 北京: 农业出版社, 1984. |
Xu SX, Xu XB. Morphology and anatomy of rice[M]. Beijing: Agriculture Press, 1984. | |
[5] |
Lim HH, Domala Z, Joginder S, et al. Rice millers’ syndrome:a preliminary report[J]. Br J Ind Med, 1984, 41(4):445-449.
pmid: 6498108 |
[6] | 郭龙彪, 罗利军, 余新桥, 等. 美国光壳稻品种农艺性状评价及其改良和利用[J]. 浙江农业科学, 1999, 1(5):3-5. |
Guo LB, Luo LJ, Xu XQ, et al. Evaluation, improvement and utilization on some selected American rice cultivars[J]. Journal of Zhejiang Agricultural Sciences, 1999, 1(5):3-5. | |
[7] |
Hu BL, Wan Y, Li X, et al. Phenotypic characterization and genetic analysis of rice with pubescent leaves and glabrous hulls(PLgh)[J]. Crop Science, 2013, 53(5):1878-1886.
doi: 10.2135/cropsci2012.09.0522 URL |
[8] |
Li JJ, Yuan YD, Lu ZF, et al. Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice[J]. Rice, 2012, 5(1):32.
doi: 10.1186/1939-8433-5-32 URL |
[9] | 李晨光. 水稻光壳基因GLR3、GL5的克隆及功能研究和叶片茸毛基因HL6的精细定位[D]. 北京:中国农业大学, 2016. |
Li CG. Cloning and function analysis of glabrous leaf gene GLR3、GL5 and fine mapping of hairy leaf gene HL6 in rice[D]. Beijing:China Agricultural University, 2016. | |
[10] |
Zhang HL, Wu K, Wang YF, et al. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice[J]. Rice, 2012, 5(1):30.
doi: 10.1186/1939-8433-5-30 URL |
[11] |
Angeles-Shim RB, Asano K, Takashi T, et al. A WUSCHEL-related homeobox 3B gene, Depilous(dep), confers glabrousness of rice leaves and glumes[J]. Rice, 2012, 5(28):28-30.
doi: 10.1186/1939-8433-5-28 URL |
[12] |
Sun WQ, Gao DW, Xiong Y, et al. Hairy Leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice[J]. Molecular Plant, 2017, 10(11):1417-1433.
doi: 10.1016/j.molp.2017.09.015 URL |
[13] |
Zeng YH, Zhu YS, Lian L, et al. Genetic analysis and fine mapping of the pubescence gene GL6 in rice(Oryza sativa L.)[J]. Chinese Science Bulletin, 2013, 58(24):2992-2999.
doi: 10.1007/s11434-013-5737-y URL |
[14] |
Xie YJ, Yu XZ, Jiang SF, et al. OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice[J]. Biochem Biophys Res Commun, 2020, 522(2):448-455.
doi: 10.1016/j.bbrc.2019.11.125 URL |
[15] |
Wang YP, Chen WL, Qin P, et al. Characterization and fine mapping of GLABROUS RICE 2 in rice[J]. J Genet Genomics, 2013, 40(11):579-582.
doi: 10.1016/j.jgg.2013.06.001 URL |
[16] | 宋海冰, 汪斌, 陈壬杰, 等. 水稻“光身”突变体glr3的遗传分析及基因定位[J]. 遗传, 2016, 38(11):1011-1018. |
Song HB, Wang B, Chen RJ, et al. Genetic analysis and gene mapping of the glabrous leaf and hull mutant glr3 in rice(Oryza sativa L.)[J]. Hereditas, 2016, 38(11):1011-1018. | |
[17] | Lan T, Zheng YL, Su ZL, et al. OsSPL10, a SBP-Box gene, plays a dual role in salt tolerance and trichome formation in rice(Oryza sativa L.)[J]. G3-Genes Genomes Genetics, 2019, 9(12):4107-4114. |
[18] |
Li WQ, Wu JG, Weng SL, et al. Characterization and fine mapping of the glabrous leaf and hull mutants(gl1)in rice(Oryza sativa L.)[J]. Plant Cell Reports, 2010, 29(6):617-627.
doi: 10.1007/s00299-010-0848-2 URL |
[19] | 洪隽, 王启钊, 富昊伟, 等. 水稻光叶性状基因gl1的精细定位与候选基因分析[J]. 核农学报, 2011, 25(6):1088-1093, 1190. |
Hong J, Wang QZ, Fu HW, et al. Fine mapping and candidate gene analysis of glabrous leaf and hull gene(gl1)in rice(Oryza sativa L.)[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(6):1088-1093, 1190. | |
[20] | 董陈文华, 张小玲, 朱骞. 水稻光叶突变新基因的克隆和亚细胞定位[J]. 分子植物育种, 2015, 13(4):716-726. |
DongChen WH, Zhang XL, Zhu Q. Cloning and subcellular localization of a new glabrous-leaf mutant gene GLL in rice(Oryza sativa L.)[J]. Molecular Plant Breeding, 2015, 13(4):716-726. | |
[21] |
Tian NN, Liu F, Wang PD, et al. The molecular basis of glandular trichome development and secondary metabolism in plants[J]. Plant Gene, 2017, 12:1-12.
doi: 10.1016/j.plgene.2017.05.010 URL |
[22] |
Larkin JC, Oppenheimer DG, Pollock S, et al. Arabidopsis GLABROUS1 gene requires downstream sequences for function[J]. The Plant Cell, 1993, 5(12):1739-1748.
pmid: 12271054 |
[23] | Li YQ, Shan XT, Gao RF, et al. Two IIIf Clade-bHLHs from freesia hybrida play divergent roles in flavonoid biosynjournal and trichome formation when ectopically expressed in Arabidopsis[J]. Scientific Reports, 2016, 6(1):680-685. |
[24] |
Gao CH, Li D, Jin CY, et al. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynjournal and trichome formation in Arabidopsis[J]. Biochem Biophys Res Commun, 2017, 485(2):360-365.
doi: 10.1016/j.bbrc.2017.02.074 URL |
[25] |
Dai XM, Zhou LM, Zhang W, et al. A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3[J]. Plant Cell Environ, 2016, 39(4):897-907.
doi: 10.1111/pce.12695 URL |
[26] |
Maes L, Inzé D, Goossens A. Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves[J]. Plant Physiology, 2008, 148(3):1453-1464.
doi: 10.1104/pp.108.125385 URL |
[27] | Fambrini M, Pugliesi C. The dynamic genetic-hormonal regulatory network controlling the trichome development in leaves[J]. Plants(Basel), 2019, 8(8):253. |
[28] |
Schellmann S, Schnittger A, Kirik V, et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. The EMBO Journal, 2002, 21(19):5036-5046.
doi: 10.1093/emboj/cdf524 URL |
[29] |
Wada T, Tachibana T, Shimura Y, et al. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC[J]. Science, 1997, 277(5329):1113-1116.
doi: 10.1126/science.277.5329.1113 URL |
[30] |
Kirik V, Simon M, Huelskamp M, et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J]. Developmental Biology, 2004, 268(2):506-513.
doi: 10.1016/j.ydbio.2003.12.037 URL |
[31] |
Koch AJ, Meinhardt H. Biological pattern formation:from basic mechanisms to complex structures[J]. Rev Mod Phys, 1994, 66(4):1481-1507.
doi: 10.1103/RevModPhys.66.1481 URL |
[32] |
Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition[J]. J Cell Sci, 1974, 15(2):321-346.
pmid: 4859215 |
[33] | Balkunde R, Pesch M, Hülskamp M. Trichome patterning in Arabidopsis thaliana:from genetic to molecular models[J]. Curr Top Dev Biol, 2010, 91:299-321. |
[34] | 张继伟, 赵杰才, 周琴, 等. 植物表皮毛研究进展[J]. 植物学报, 2018, 53(5):726-737. |
Zhang JW, Zhao JC, Zhou Q, et al. Progress in research of plant trichome[J]. Chinese Bulletin of Botany, 2018, 53(5):726-737. | |
[35] |
Wang TY, Jia QM, Wang W, et al. GCN5 modulates trichome initiation in Arabidopsis by manipulating histone acetylation of core trichome initiation regulator genes[J]. Plant Cell Reports, 2019, 38(6):755-765.
doi: 10.1007/s00299-019-02404-2 URL |
[36] |
Huang FY, Chen JH, Feng YR, et al. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3[J]. Plant J, 2020, 103(5):1735-1743.
doi: 10.1111/tpj.v103.5 URL |
[37] |
Wei LH, Song PZ, Wang Y, et al. The m(6)A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis[J]. Plant Cell, 2018, 30(5):968-985.
doi: 10.1105/tpc.17.00934 URL |
[38] | 郑叶子, 王丹, 潘咪, 等. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2):15-23. |
Zheng YZ, Wang D, Pan M, et al. Isolation and characterization of two new GLABROUS1 alleles in Arabidopsis[J]. Biotechnology Bulletin, 2021, 37(2):15-23. | |
[39] |
Barunava P, Sitakanta P, Yuan L. Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynjournal in Arabidopsis[J]. Plant J, 2013, 74(3):435-447.
doi: 10.1111/tpj.2013.74.issue-3 URL |
[40] |
Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, et al. TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation[J]. Plant Physiology, 2016, 170(3):1624-1639.
doi: 10.1104/pp.15.01309 URL |
[41] |
Wang Z, Yang ZR, Li FG. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton[J]. Plant Biotechnol J, 2019, 17(9):1706-1722.
doi: 10.1111/pbi.13167 pmid: 31111642 |
[42] |
Qin NX, Xu DQ, Li JG, et al. COP9 signalosome:Discovery, conservation, activity, and function[J]. J Integr Plant Biol, 2020, 62(1):90-103.
doi: 10.1111/jipb.v62.1 URL |
[43] |
An LJ, Zhou ZJ, Su S, et al. GLABROUS INFLORESCENCE STEMS(GIS)is required for trichome branching through gibberellic acid signaling in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(2):457-469.
doi: 10.1093/pcp/pcr192 URL |
[44] |
Zhou ZJ, An LJ, Sun LL, et al. ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation[J]. Plant Signal Behav, 2012, 7(1):28-30.
doi: 10.4161/psb.7.1.18404 URL |
[45] | 王启钊, 赵海军, 李文旭, 等. 水稻LOC_Os05g02754基因的分子表征[J]. 核农学报, 2013, 27(3):301-306. |
Wang QZ, Zhao HJ, Li WX, et al. Molecular characterization of LOCOs05g02754 gene in rice(Oryza Sativa L.)[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3):301-306. | |
[46] | 石如玲, 姜玲玲. 过氧化物酶体脂肪酸β氧化[J]. 中国生物化学与分子生物学报, 2009, 25(1):12-16. |
Shi RL, Jiang LL. Recent advances in peroxisomal fatty acid β-oxidation[J]. Chinese Journal of Biochemistry Molecular Biology, 2009, 25(1):12-16. | |
[47] |
Reina-Pinto JJ, Voisin D, Kurdyukov S, et al. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process[J]. The Plant Cell, 2009, 21(4):1252-1272.
doi: 10.1105/tpc.109.065565 URL |
[48] |
Inthima P, Nakano M, Otani M, et al. Overexpression of the gibberellin 20-oxidase gene from Torenia fournieri resulted in modified trichome formation and terpenoid metabolities of Artemisia annua L.[J]. Plant Cell Tiss Org Cult, 2017, 129(2):223-236.
doi: 10.1007/s11240-017-1171-1 URL |
[49] |
Zhou Z, Sun L, Zhao Y, et al. Zinc Finger Protein 6(ZFP6)regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana[J]. New Phyto, 2013, 198(3):699-708.
doi: 10.1111/nph.2013.198.issue-3 URL |
[50] |
Xia XC, Hu QQ, Li W, et al. Cotton(Gossypium hirsutum)JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell Tiss Org Cult, 2018, 133(2):249-262.
doi: 10.1007/s11240-018-1378-9 URL |
[51] |
Peng S, Sun K, Guo Y, et al. Arabidopsis nucleoporin CPR5 controls trichome cell death through the core cell cycle regulator CKI[J]. Plant Biology, 2020, 22(2):337-345.
doi: 10.1111/plb.13068 pmid: 31692196 |
[52] |
Zheng KJ, Tian HN, Hu QN, et al. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation[J]. Sci Rep, 2016, 6:19254.
doi: 10.1038/srep19254 URL |
[53] |
Wang C, Liu Q, Shen Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3):283-287.
doi: 10.1038/s41587-018-0003-0 URL |
[54] | 安文静, 王凯婕, 刘亚菲, 等. CRISPR/Cas9介导的水稻OsRhoGAP2基因的敲除[J]. 中国生物化学与分子生物学报, 2020, 36(8):977-986. |
An WJ, Wang KJ, Liu YF, et al. CRISPR/Cas9-mediated knockdown of rice OsRhoGAP2 genes[J]. Chinese Journal of Biochemistry Molecular Biology, 2020, 36(8):977-986. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[8] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[9] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[10] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[11] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[12] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[13] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[14] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[15] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||