生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 49-57.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1287
收稿日期:
2020-10-20
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
向芬,女,助理研究员,研究方向:茶树生态栽培;E-mail: 基金资助:
XIANG Fen(), LI Wei, LIU Hong-yan, YIN Xia, ZENG Ze-xuan, ZHOU Ling-yun()
Received:
2020-10-20
Published:
2021-06-26
Online:
2021-07-08
摘要:
为了研究不同减氮模式对茶树地下部分细菌菌落结构的影响。设置16 kg/667 m2纯氮(减氮55.6%处理A),26 kg/667 m2纯氮(减氮27.8%处理B),36 kg/667 m2纯氮(常规施肥C),不施氮(CK)共4个施氮水平,对根际及非根际0-20 cm土壤、非根际20-40 cm土壤36个样品进行16S rRNA序列测定,利用IonS5TMXL高通量测序平台对不同减氮处理的土壤细菌群落结构进行分析。试验结果表明:A、B、C三种施肥水平下,根际、非根际0-20 cm土壤及非根际20-40 cm土壤的细菌OTUs分别为505、854及835个,其中特异OTUs随着施氮量逐渐增加而降低。土壤细菌丰度和多样性分析显示施氮量为26 kg/667 m2(减氮处理B)在根际与非根际0-20 cm土壤中细菌丰度较高,细菌多样性最高,土壤碳通量的结果亦证明了减氮处理B土壤中微生物较多。施肥茶园地下部分在门水平上的优势菌基本为氮代谢相关菌类,其中共有3个优势类群,分别为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)。在属的水平上,根际土壤与非根际土壤细菌优势菌完全不同。适当减氮处理B茶园土壤中细菌菌落多样性较多,丰度较高,并主要集中在养分吸收利用的根际及周边土壤中,有利于茶园养分的高效利用。
向芬, 李维, 刘红艳, 银霞, 曾泽萱, 周凌云. 氮肥减施对茶园土壤细菌群落结构的影响研究[J]. 生物技术通报, 2021, 37(6): 49-57.
XIANG Fen, LI Wei, LIU Hong-yan, YIN Xia, ZENG Ze-xuan, ZHOU Ling-yun. Influence of Nitrogen Fertilizer Reduction on the Structure of Bacterial Community in Tea Garden Soil[J]. Biotechnology Bulletin, 2021, 37(6): 49-57.
处理 Treatment | 施纯氮 Input of nitrogen/(kg·667 m-2) | 肥料种类 Fertilizer type | 施用方式 Application method | 施肥量 Fertilizer rate/(kg·667 m-2) |
---|---|---|---|---|
CK | 0 | 菜籽饼 | 基肥 | 0 |
硫酸钾型复合肥 | 0 | |||
尿素 | 追肥 | 0 | ||
减氮处理A | 16 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 0 | ||
减氮处理B | 26 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 10 | ||
常规施肥C | 36 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 20 |
表1 试验茶园施肥方式
Table 1 Fertilizer application methods in tea garden
处理 Treatment | 施纯氮 Input of nitrogen/(kg·667 m-2) | 肥料种类 Fertilizer type | 施用方式 Application method | 施肥量 Fertilizer rate/(kg·667 m-2) |
---|---|---|---|---|
CK | 0 | 菜籽饼 | 基肥 | 0 |
硫酸钾型复合肥 | 0 | |||
尿素 | 追肥 | 0 | ||
减氮处理A | 16 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 0 | ||
减氮处理B | 26 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 10 | ||
常规施肥C | 36 | 菜籽饼 | 基肥 | 9.25 |
硫酸钾型复合肥 | 6.75 | |||
尿素 | 追肥 | 20 |
图2 不同土壤样品测序稀释曲线图 RCK,RA,RB,RC为根际土壤各施肥处理,CK20,A20,B20,C20为非根际0-20 cm土壤的各施肥处理,CK40,A40,B40,C40为非根际20-40 cm土壤的各施肥处理,下同
Fig.2 Rarefaction analysis of 16S libraries from different soil samples RCK, RA, RB, RC are fertilization treatments of rhizosphere soil; CK20, A20, B20, C20 are fertilization treatments of 0-20 cm non rhizosphere soil; CK40, A40, B40, C40 are fertilization treatments of 20-40 cm non rhizosphere soil. The same below
种类 Type | 土层 Soil layer | 施氮水平Nitrogen application level | 观察物种 Observed species | Shannon指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | Ace 指数 Ace index | PD进化树 PD whole tree |
---|---|---|---|---|---|---|---|---|
根际 土壤 | RCK | 583.00±16.41 | 5.63±0.63 | 0.94±0.02 | 723.58±124.19 | 740.28±110.13 | 52.12±0.81 | |
RA | 618.00±19.93 | 5.38±0.63 | 0.92±0.04 | 794.38±32.25 | 783.03±54.51 | 53.41±0.68 | ||
RB | 619.00±14.40 | 5.76±0.29 | 0.95±0.01 | 795.77±49.92 | 797.12±55.10 | 54.41±0.67 | ||
RC | 547.00±38.90 | 5.37±0.84 | 0.93±0.04 | 724.53±120.64 | 714.81±103.67 | 49.08±0.89 | ||
非根 际土 壤 | 0-20 cm | CK20 | 1186.00±153.96 | 8.24±0.84 | 0.99±0.01 | 1279.50±124.74 | 1301.71±139.38 | 93.92±4.44 |
A20 | 957.00±115.66 | 7.39±0.41 | 0.98±0.01 | 1058.24±150.86 | 1085.27±159.78 | 82.99±4.40* | ||
B20 | 1069.00±83.16 | 7.72±0.11 | 0.99±0.01 | 1216.84±159.54 | 1247.27±149.99 | 88.46±5.92 | ||
C20 | 1075.00±121.35 | 7.57±0.27 | 0.98±0.01 | 1241.87±170.12 | 1270.58±161.15 | 86.69±5.42 | ||
20-40 cm | CK40 | 1110.00±110.59 | 7.52±0.30 | 0.98±0.01 | 1273.12±48.39 | 1286.25±53.62 | 91.49±3.11 | |
A40 | 893.00±18.08* | 7.13±0.26 | 0.98±0.01 | 982.87±36.79* | 1014.62±43.91* | 74.89±0.72** | ||
B40 | 905.00±88.09* | 7.04±0.37 | 0.97±0.02 | 993.23±156.54* | 1029.39±179.62* | 78.10±4.75* | ||
C40 | 1142.00±95.50 | 7.99±0.50* | 0.99±0.01 | 1444.91±122.97 | 1440.32±187.43 | 102.06±9.56* |
表2 各土壤样品微生物丰富度指数与多样性指数
Table 2 Diversity and richness index of bacteria from twelve samples
种类 Type | 土层 Soil layer | 施氮水平Nitrogen application level | 观察物种 Observed species | Shannon指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | Ace 指数 Ace index | PD进化树 PD whole tree |
---|---|---|---|---|---|---|---|---|
根际 土壤 | RCK | 583.00±16.41 | 5.63±0.63 | 0.94±0.02 | 723.58±124.19 | 740.28±110.13 | 52.12±0.81 | |
RA | 618.00±19.93 | 5.38±0.63 | 0.92±0.04 | 794.38±32.25 | 783.03±54.51 | 53.41±0.68 | ||
RB | 619.00±14.40 | 5.76±0.29 | 0.95±0.01 | 795.77±49.92 | 797.12±55.10 | 54.41±0.67 | ||
RC | 547.00±38.90 | 5.37±0.84 | 0.93±0.04 | 724.53±120.64 | 714.81±103.67 | 49.08±0.89 | ||
非根 际土 壤 | 0-20 cm | CK20 | 1186.00±153.96 | 8.24±0.84 | 0.99±0.01 | 1279.50±124.74 | 1301.71±139.38 | 93.92±4.44 |
A20 | 957.00±115.66 | 7.39±0.41 | 0.98±0.01 | 1058.24±150.86 | 1085.27±159.78 | 82.99±4.40* | ||
B20 | 1069.00±83.16 | 7.72±0.11 | 0.99±0.01 | 1216.84±159.54 | 1247.27±149.99 | 88.46±5.92 | ||
C20 | 1075.00±121.35 | 7.57±0.27 | 0.98±0.01 | 1241.87±170.12 | 1270.58±161.15 | 86.69±5.42 | ||
20-40 cm | CK40 | 1110.00±110.59 | 7.52±0.30 | 0.98±0.01 | 1273.12±48.39 | 1286.25±53.62 | 91.49±3.11 | |
A40 | 893.00±18.08* | 7.13±0.26 | 0.98±0.01 | 982.87±36.79* | 1014.62±43.91* | 74.89±0.72** | ||
B40 | 905.00±88.09* | 7.04±0.37 | 0.97±0.02 | 993.23±156.54* | 1029.39±179.62* | 78.10±4.75* | ||
C40 | 1142.00±95.50 | 7.99±0.50* | 0.99±0.01 | 1444.91±122.97 | 1440.32±187.43 | 102.06±9.56* |
图4 不同土壤样品OTUs分布的Venn图 A, B, C分别表示根际土壤、非根际0-20 cm土壤,非根际20-40 cm土壤的Venn图
Fig.4 Venn diagrams of OTUs distribution of different soil samples A, B and C are Venn plots of rhizosphere soil, non rhizosphere 0-20 cm soil and non rhizosphere 20-40 cm soil
图7 组间硝化螺旋菌门显著性差异统计图 图中横轴为样品分组;纵向为对应物种的相对丰度。横线代表具有显著性差异的两个分组,没有则表示此物种在两个分组间不存在差异。“*”表示两组间差异显著(P < 0.05),“**”表示两组间差异极显著(P < 0.01)
Fig.7 Statistical chart of significant difference with Nitros-pirae between groups The horizontal axis in the figure is divided into sample groups. The relative abundance of the corresponding species was vertical. The horizontal line represents two groups with significant differences. * and ** indicate the difference between the two groups at 0.05, 0.01 level, respectively
[1] | 吴海宁, 黄志鹏, 唐秀梅, 等. 氮肥减施对花生根际土壤固氮微生物多样性的影响[J]. 江苏农业科学, 2019, 47(16):93-97. |
Wu HN, Huang ZP, Tang XM, et al. Effects of nitrogen fertilizer reduction on the diversity of nitrogen fixing microorganisms in peanut rhizosphere soil[J]. Jiangsu Agricultural Sciences, 2019, 47(16):93-97. | |
[2] |
Rousk J, Bååth E, Brookes PC, et al. Soil bacterial and fungal communities across a PH gradient in an arable soil[J]. ISME Journal, 2010, 4(10):1340-1351.
doi: 10.1038/ismej.2010.58 URL |
[3] | Oberson A, Friesen DK, Rao IM, et al. Phosphorus transformations in an oxisol under contrasting land-use systems:the role of the soil microbial biomass[J]. Plant & Soil, 2001, 237(2):197-210. |
[4] | Cleveland CC, Nemergut DR, Schmidt SK, et al. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition[J]. Biogeo Chemistry, 2007, 82(3):229-240. |
[5] | Griffith DR, Kladivko EJ, Mannering JV, et al. Long-term tillage and rotation effects on corn growth and yield on high and low organic matter, poorly drained soils[J]. Agronomy Journal, 1988, 80(4). |
[6] |
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups[J]. BMC Microbiology, 2007, 7(1):106.
doi: 10.1186/1471-2180-7-106 URL |
[7] | 杨山, 李小彬, 王汝振, 等. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(3):739-746. |
Yang S, Li XB, Wang RZ, et al. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern china[J]. Chinese Journal of Applied Ecology, 2015, 26(3):739-746. | |
[8] | 田永辉, 魏国雄, 夏绍湄, 等. 茶树不同品种对根际固氮微生物的影响[J]. 广东茶业, 1999(3):22-24. |
Tian YH, Wei GX, Xia SM, et al. Effects of different tea varieties on nitrogen fixing microorganisms in rhizosphere[J]. Guangdong Tea Industry, 1999(3):22-24. | |
[9] | 李俊强, 林利华, 张帆, 等. 施肥模式对茶树根际土壤微生物数量及酶活性的影响[J]. 水土保持研究, 2019, 26(3):22-28. |
Li JQ, Lin LH, Zhang F, et al. Effect of fertilization regime on soil microbial quantity and enzyme activity in rhizosphere of tea[J]. Research of soil and Water Conservation, 2019, 26(3):22-28. | |
[10] | 张逸飞, 钟文辉, 李忠佩, 等. 长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J]. 生态与农村环境学报, 2006, 22(4):39-44. |
Zhang YF, Zhong WH, Li ZP, et al. Effects of long term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay[J]. Journal of Ecology and Rural Environment, 2006, 22(4):39-44. | |
[11] |
Chao AI, Liang GQ, Sun JW, et al. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization lpractices in a fluvoaquic soil[J]. Geoderma, 2012, 173-174(2):330-338.
doi: 10.1016/j.geoderma.2011.07.020 URL |
[12] | 罗毅, 苏有健, 张永利, 等. 不同施肥处理对茶树根际细菌多样性的影响[J]. 中国农学通报, 2014, 30(25):177-183. |
Luo Y, Su YJ, Zhang YL, et al. Effect of fertilizer on tea plant rhizosphere bacteria diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(25):177-183. | |
[13] | 张薇, 魏海雷, 高洪文, 等. 土壤微生物多样性及其环境影响因子研究进展[J]. 生态学杂志, 2005, 24(1):48-52. |
Zhang W, Wei HL, Gao HW, et al. Advances of studies on soil microbial diversity and environmental impact factors[J]. Chinese Journal of Ecology, 2005, 24(1):48-52. | |
[14] | 汪华. 茶园土壤微生物群落结构对植茶年限、施肥和高温条件的响应研究[D]. 杭州:浙江大学, 2015. |
Wang H. The response of soil microbial community structure to cultivatingage, fertilization and high temperature in tea orchard[D]. Hangzhou:Zhejiang University, 2015. | |
[15] | 李沛翰, 林彦锋, 王凯英, 等. 16S扩增子技术研究海鲜样本菌群结构组成[J]. 军事医学, 2019, 43(4):282-287. |
Li PH, Lin YF, Wang KY, et al. Bacterial community composition of seafood samples based on 16S amplicon sequencing[J]. Military Medicine, 2019, 43(4):282-287. | |
[16] | 李维, 向芬, 周凌云, 等. 氮素减施对茶树光合作用和氮肥利用率的影响[J]. 生态学杂志, 2020, 39(1):93-98. |
Li W, Xiang F, Zhou LY, et al. Effects of nitrogen fertilizer reduction on photosynjournal and nitrogen use efficiency in tea plant[J]. Chinese Journal of Ecology, 2020, 39(1):93-98. | |
[17] | 于海玲. 施氮量对土壤微生物群落组成特征的影响研究[D]. 长春:吉林农业大学, 2017. |
Yu HL. Effect of nitrogen application on composition characters of soil microbial communities[D]. Changchun:Jilin Agricultural University, 2017. | |
[18] | 吴林, 苏延桂, 张元明. 模拟降水对古尔班通古特沙漠生物结皮表观土壤碳通量的影响[J]. 生态学报, 2012, 32(13):4103-4113. |
Wu L, Su YG, Zhang YM. Effects of simulated precipitation on apparent carbon flux of biologically crusted soils in the Gurbantunggut Desert in Xinjiang[J]. Acta Ecologica Sinica, 2012, 32(13):4103-4113.
doi: 10.5846/stxb URL |
|
[19] | 孙锋, 赵灿灿, 何琼杰, 等. 施肥和杂草多样性对土壤微生物群落的影响[J]. 生态学报, 2015, 35(18):6023-6031. |
Sun F, Zhao CC, He QJ, et al. Effects of fertilization and diversity of weed species on the soil microbial community[J]. Acta Ecologica Sinica, 2015, 35(18):6023-6031. | |
[20] | 李凤霞, 王世荣, 吴霞, 等. 长期施肥对宁夏灌淤土土壤微生物多样性的影响[J]. 土壤通报, 2016, 47(5):1134-1141. |
Li FX, Wang SR, Wu X, et al. Effect of long-term fertilization on soil microbial diversity in irrigation silting soil of ningxia[J]. Chinese Journal of Soil Science, 2016, 47(5):1134-1141. | |
[21] | 李金婷, 黄少欣, 韦持章, 等. 不同氮素营养水平对茶树根际土壤微生物的影响及其在养分调控中的作用[J]. 华北农学报, 2019, 34(S1):281-288. |
Li JT, Huang SX, Wei CZ, et al. Effects of different nitrogen levels on tea rhizosphere microbial community and its role in adjusting soil nutrients[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1):281-288. | |
[22] |
Ruan JY, Gerendás J, Härdter R, et al. Effect of nitrogen form and root-zone PH on growth and nitrogen uptake of tea(Camellia sinensis)plants[J]. Annals of Botany, 2007, 99(2):301-310.
doi: 10.1093/aob/mcl258 URL |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[5] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[6] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[7] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[8] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[9] | 游玲, 简晓平, 范方勇, 杨智, 王涛. 宜宾浓香型白酒产区窖泥生态监测[J]. 生物技术通报, 2023, 39(7): 254-265. |
[10] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[11] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[12] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[13] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[14] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[15] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||