生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 35-44.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0514
收稿日期:
2021-04-19
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
李春杰,女,博士,副研究员,研究方向:生物防治机理和应用;E-mail:基金资助:
Received:
2021-04-19
Published:
2021-07-26
Online:
2021-08-13
摘要:
寄主根部及其根际微生物释放的化感信号物质是植物寄生线虫寻找、定位和侵染植物的重要线索。目前,寻找植物寄生线虫预侵染阶段的化感信号物质以及相关的分子靶标研究,以期开发植物源和线虫源杀线虫剂是线虫学家的国际研究热点和前沿。本文重点综述了植物寄生线虫对化感信号识别机制的国内外研究进展。首先定义了植物寄生线虫对化感信号的识别或者趋化性,列出了近些年所报道的主要化感信号物质;对经济上最重要的两种植物寄生线虫(根结线虫和大豆孢囊线虫)的趋化性进行了比较;再进一步以模式秀丽隐杆线虫的化感功能为基础,论述了植物寄生线虫趋化性的分子调控研究进展;讨论了植物寄生线虫化感信号转导的潜在机制及其研究意义和难度;最后,对植物寄生线虫化感信号识别机制的重要研究方向及前景进行总结和展望。
李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44.
LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals[J]. Biotechnology Bulletin, 2021, 37(7): 35-44.
图1 植物寄生线虫的趋化性和化感信号转导途径在防治上的应用
Fig.1 Application of chemotaxis of plant-parasitic nematode and the transduction pathway of semiochemical signals in nematode control
[1] |
Abad P,Gouzy J,Aury JM,et al.Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J].Nat Biotechnol,2008,26(8):909-915.
doi: 10.1038/nbt.1482 URL |
[2] | Fenoll C,Grundler FMW,Ohl SA.Cellular and molecular aspects of plant-nematode interactions[M].Dordrecht:Springer Netherlands,1997. |
[3] |
Reynolds AM,Dutta TK,Curtis RH,et al.Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes[J].J R Soc Interface,2011,8(57):568-577.
doi: 10.1098/rsif.2010.0417 pmid: 20880854 |
[4] |
Wuyts N,Maung ZTZ,Swennen R,et al.Banana rhizodeposition:characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis[J].Plant Soil,2006,283(1/2):217-228.
doi: 10.1007/s11104-006-0013-4 URL |
[5] |
Xu Z,Zhao YQ,Yang DJ,et al.Attractant and repellent effects of sweet potato root exudates on the potato rot nematode, Ditylenchus destructor[J].Nematology,2015,17(1):117-124.
doi: 10.1163/15685411-00002856 URL |
[6] |
Wang C,Masler EP,Rogers ST.Responses of Heterodera glycines and Meloidogyne incognita infective juveniles to root tissues, root exudates, and root extracts from three plant species[J].Plant Dis,2018,102(9):1733-1740.
doi: 10.1094/PDIS-09-17-1445-RE URL |
[7] | 王从丽,李春杰,胡岩峰.利用pluronic三维胶系统研究植物寄生线虫的趋化性[J].土壤与作物,2016,5(1):1-13. |
Wang CL,Li CJ,Hu YF.Pluronic gel system:an approach to investigate chemotaxis of plant parasitic nematodes[J].Soils Crops,2016,5(1):1-13. | |
[8] | 郑雅楠,杨忠岐,王小艺,等.植物寄生线虫的化学趋性[J].生态学杂志,2014,33(3):837-842. |
Zheng YN,Yang ZQ,Wang XY,et al.Chemotaxis of plant parasitic nematodes:a review[J].Chin J Ecol,2014,33(3):837-842. | |
[9] | 周沁莹,朱曼,黄辉,等.植物寄生线虫的化学感受系统研究进展[J].中国科学:生命科学,2019,49(7):828-838. |
Zhou QY,Zhu M,Huang H,et al.Chemosensory system of plant parasitic nematodes[J].Sci Sin:Vitae,2019,49(7):828-838.
doi: 10.1360/SSV-2019-0092 URL |
|
[10] | Viglierchio DR.Attraction of parasitic nematodes by plant root-emanations[J].Phytopathology,1961,51:136-142. |
[11] |
Riddle DL,Bird AF.Responses of the plant parasitic nematodes rotylenchulus reniformis, Anguina agrostis and Meloidogyne java-nica to chemical attractants[J].Parasitology,1985,91(Pt 1):185-195.
doi: 10.1017/S0031182000056626 URL |
[12] |
Ali JG,Alborn HT,Stelinski LL.Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes[J].J Ecol,2011,99(1):26-35.
doi: 10.1111/jec.2010.99.issue-1 URL |
[13] | Gaugler R,Bilgrami AL.Nematode behaviour[M].Wallingford:CABI,2004. |
[14] | 漆永红.甘薯茎线虫病的侵染特点及其相关因子研究[D].兰州:甘肃农业大学,2008. |
Qi YH.Study on infective character and correlative factor of sweet potato stem nematode disease[D].Lanzhou:Gansu Agricultural University,2008. | |
[15] | 李克梅,刘俊杰,范钧星,等.甜菜孢囊线虫二龄幼虫对不同类型化合物的趋化性研究[J].新疆农业大学学报,2019,42(2):134-138. |
Li KM,Liu JJ,Fan JX,et al.Chemotaxis of the second stage juveniles of Heterodera schachtii in response to different compounds[J].J Xinjiang Agric Univ,2019,42(2):134-138. | |
[16] | Robinson AF,Perry RN.Behaviour and sensory perception[M]//Plant Nematology. Wallingford:CABI, :210-233. |
[17] | 何琪,邢骥,张声扬,等.不同类型杀线剂对甘薯茎线虫趋化性的影响[J].植物保护,2010,36(4):75-79. |
He Q,Xing J,Zhang SY,et al.Effects of different types of nematicides on the chemotaxis of Ditylenchus destructor[J].Plant Prot,2010,36(4):75-79. | |
[18] | 杨亮亮.根际细菌对两种线虫趋化性的作用[D].昆明:云南大学,2016. |
Yang LL.Chemotaxis of two kinds of nematodes induced by rhizosphere bacteria[D].Kunming:Yunnan University,2016. | |
[19] | 孙嫣.根际微生物对根结线虫的吸引及其对线虫寄主趋化性的影响[D].昆明:云南大学,2017. |
Sun Y.Effect of rhizosphere microbe on chemotaxis of root-knot nematode[D].Kunming:Yunnan University,2017. | |
[20] | 孙漫红,刘杏忠.淡紫拟青霉发酵滤液对大豆胞囊线虫趋化性的影响[J].植物病理学报,2004,34(4):376-379. |
Sun MH,Liu XZ.Effects of Paecilomyces lilacinus M-14 fermentation filtrate on the affinity between soybean cyst nematode and soybean root[J].Acta Phytopathol Sin,2004,34(4):376-379. | |
[21] | 王雪,段玉玺,陈立杰,等.不同大豆品种根系对大豆胞囊线虫趋化性的影响[J].大豆科学,2008,27(6):1015-1018. |
Wang X,Duan YX,Chen LJ,et al.Effects of root from different soybean cultivars on the affinity between soybean cyst nematode and soybean root[J].Soybean Sci,2008,27(6):1015-1018. | |
[22] |
Zhao X,Schmitt M,Hawes MC.Species-dependent effects of border cell and root tip exudates on nematode behavior[J].Phytopathology,2000,90(11):1239-1245.
doi: 10.1094/PHYTO.2000.90.11.1239 pmid: 18944426 |
[23] | 丁正蛟.七种植物根系分泌物对南方根结线虫趋化性的作用[D].昆明:云南大学,2018. |
Ding ZJ.Chemotaxis of Meloidogyne incognita to root exudates from seven plants[D].Kunming:Yunnan University,2018. | |
[24] | Huettel RN andJaffe H.Attraction and behavior of Heterodera glycines, the soybean cyst nematode, to some biological and inorganic compounds[J].Proceedings of the Helminthological Society of Washington,1987,54(1):122-125. |
[25] |
Fudali SL,Wang C,Williamson VM.Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla[J].Mol Plant Microbe Interact,2013,26(1):75-86.
doi: 10.1094/MPMI-05-12-0107-R URL |
[26] |
Čepulytė R,Danquah WB,Bruening G,et al.Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species[J].Sci Rep,2018,8(1):10847.
doi: 10.1038/s41598-018-29165-4 pmid: 30022095 |
[27] |
Hu Y,You J,Li C,et al.Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J].Sci Rep,2017,7:41282.
doi: 10.1038/srep41282 URL |
[28] |
Kammerhofer N,Radakovic Z,Regis JM,et al.Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis[J].New Phytol,2015,207(3):778-789.
doi: 10.1111/nph.13395 pmid: 25825039 |
[29] |
Sikder MM,Vestergård M.Impacts of root metabolites on soil nematodes[J].Front Plant Sci,2019,10:1792.
doi: 10.3389/fpls.2019.01792 URL |
[30] |
Riga E,Holdsworth DR,Perry RN,et al.Electrophysiological analysis of the response of males of the potato cyst nematode, Globodera rostochiensis, to fractions of their homospecific sex pheromone[J].Parasitology,1997,115(3):311-316.
doi: 10.1017/S0031182097001285 URL |
[31] | Perry RN,Moens M.Introduction to plant-parasitic nematodes;modes of parasitism[M]//Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht:Springer Netherlands,2011:3-20. |
[32] |
Hamada N,Yimer HZ,Williamson VM,et al.Chemical hide and seek:nematode’s journey to its plant host[J].Mol Plant,2020,13(4):541-543.
doi: 10.1016/j.molp.2020.03.005 URL |
[33] |
Tsai AY,Higaki T,Nguyen CN,et al.Regulation of root-knot nematode behavior by seed-coat mucilage-derived attractants[J].Mol Plant,2019,12(1):99-112.
doi: 10.1016/j.molp.2018.11.008 URL |
[34] |
Oota M,Tsai AY,Aoki D,et al.Identification of naturally occurring polyamines as root-knot nematode attractants[J].Mol Plant,2020,13(4):658-665.
doi: 10.1016/j.molp.2019.12.010 URL |
[35] |
Manohar M,Tenjo-Castano F,Chen S,et al.Plant metabolism of nematode pheromones mediates plant-nematode interactions[J].Nat Commun,2020,11(1):208.
doi: 10.1038/s41467-019-14104-2 pmid: 31924834 |
[36] |
Manosalva P,Manohar M,von Reuss SH,et al.Conserved nematode signalling molecules elicit plant defenses and pathogen resistance[J].Nat Commun,2015,6:7795.
doi: 10.1038/ncomms8795 pmid: 26203561 |
[37] |
Wang CL,Lower S,Williamson VM.Application of Pluronic gel to the study of root-knot nematode behaviour[J].Nematology,2009,11(3):453-464.
doi: 10.1163/156854109X447024 URL |
[38] |
Williamson VM,Gleason CA.Plant-nematode interactions[J].Curr Opin Plant Biol,2003,6(4):327-333.
pmid: 12873526 |
[39] | Marhavý P,Kurenda A,Siddique S,et al.Single-cell damage elicits regional, nematode-restricting ethylene responses in roots[J].EMBO J,2019,38(10):e100972. |
[40] |
Mulkey TJ,Evans ML.Geotropism in corn roots:evidence for its mediation by differential acid efflux[J].Science,1981,212(4490):70-71.
pmid: 17747632 |
[41] |
Peters WS,Felle HH.The correlation of profiles of surface pH and elongation growth in maize roots[J].Plant Physiol,1999,121(3):905-912.
pmid: 10557239 |
[42] | Hua C, Li C, Jiang Y, et al. Response of soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne spp.) to gradients of pH and inorganic salts[J]. Plant Soil, 2020,455:305-318. |
[43] |
Wang C,Bruening G,Williamson VM.Determination of preferred pH for root-knot nematode aggregation using Pluronic F-127 gel[J].J Chem Ecol,2009,35(10):1242-1251.
doi: 10.1007/s10886-009-9703-8 URL |
[44] |
Pye AE,Burman M.Neoaplectana carpocapsae:Nematode accumulations on chemical and bacterial gradients[J].Exp Parasitol,1981,51(1):13-20.
pmid: 6257537 |
[45] |
Sassa T,Murayama T,Maruyama IN.Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans[J].Neurosci Lett,2013,555:248-252.
doi: 10.1016/j.neulet.2013.06.001 URL |
[46] |
Beeman AQ,Njus ZL,Pandey S,et al.Chip technologies for screening chemical and biological agents against plant-parasitic Nematodes[J].Phytopathology®,2016,106(12):1563-1571.
doi: 10.1094/PHYTO-06-16-0224-R URL |
[47] |
Hosoi A,Katsuyama T,Sasaki Y,et al.Nitrate analogs as attractants for soybean cyst nematode[J].Biosci Biotechnol Biochem,2017,81(8):1542-1547.
doi: 10.1080/09168451.2017.1332980 URL |
[48] |
Castro CE,Belser NO,McKinney HE,et al.Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions[J].J Chem Ecol,1990,16(4):1199-1205.
doi: 10.1007/BF01021019 pmid: 24263720 |
[49] | 孟丽,漆永红,刘玉霞,等.南方根结线虫二龄幼虫对不同类型盐离子的趋化反应[J].植物保护,2014,40(2):85-89. |
Meng L,Qi YH,Liu YX,et al.Chemotaxis of the second stage juveniles of Meloidogyne incognita in response to different salt ions[J].Plant Prot,2014,40(2):85-89. | |
[50] |
Li CJ,Wang Y,Hu YF,et al.Three dimensional study of wounded plant roots recruiting entomopathogenic nematodes with Pluronic gel as a medium[J].Biol Control,2015,89:68-74.
doi: 10.1016/j.biocontrol.2015.05.007 URL |
[51] |
Li CJ,Zhou XH,Lewis EE,et al.Study on host-seeking behavior and chemotaxis of entomopathogenic nematodes using Pluronic F-127 gel[J].J Invertebr Pathol,2019,161:54-60.
doi: 10.1016/j.jip.2019.01.004 URL |
[52] |
Shivakumara TN,Dutta TK,Chaudhary S,et al.Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita[J].Mol Plant Microbe Interact,2019,32(7):876-887.
doi: 10.1094/MPMI-08-18-0226-R URL |
[53] |
Wang C,Lower S,Thomas VP,et al.Root-knot nematodes exhibit strain-specific clumping behavior that is inherited as a simple genetic trait[J].PLoS One,2010,5(12):e15148.
doi: 10.1371/journal.pone.0015148 URL |
[54] |
Choe A,von Reuss SH,Kogan D,et al.Ascaroside signaling is widely conserved among nematodes[J].Curr Biol,2012,22(9):772-780.
doi: 10.1016/j.cub.2012.03.024 URL |
[55] |
de Bono M,Maricq AV.Neuronal substrates of complex behaviors in C. elegans[J].Annu Rev Neurosci,2005,28:451-501.
doi: 10.1146/annurev.neuro.27.070203.144259 URL |
[56] |
Macosko EZ,Pokala N,Feinberg EH,et al.A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans[J].Nature,2009,458(7242):1171-1175.
doi: 10.1038/nature07886 URL |
[57] |
Ortiz CO,Faumont S,Takayama J,et al.Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases[J].Curr Biol,2009,19(12):996-1004.
doi: 10.1016/j.cub.2009.05.043 URL |
[58] |
Bargmann C.Chemosensation in C. elegans[J/OL].WormBook,2006. DOI:10.1895/wormbook.1.123.1.
doi: 10.1895/wormbook.1.123.1 |
[59] |
Perry RN.Chemoreception in plant parasitic nematodes[J].Annu Rev Phytopathol,1996,34:181-199.
pmid: 15012540 |
[60] |
Rengarajan S,Hallem EA.Olfactory circuits and behaviors of nematodes[J].Curr Opin Neurobiol,2016,41:136-148.
doi: S0959-4388(16)30119-2 pmid: 27668755 |
[61] |
Sengupta P.Generation and modulation of chemosensory behaviors in C. elegans[J].Pflugers Arch,2007,454(5):721-734.
doi: 10.1007/s00424-006-0196-9 URL |
[62] |
Busch KE,Laurent P,Soltesz Z,et al.Tonic signaling from O2 sensors sets neural circuit activity and behavioral state[J].Nat Neurosci,2012,15(4):581-591.
doi: 10.1038/nn.3061 URL |
[63] |
Carrillo MA,Guillermin ML,Rengarajan S,et al.O2- sensing neurons control CO2 response in C. elegans[J].J Neurosci,2013,33(23):9675-9683.
doi: 10.1523/JNEUROSCI.4541-12.2013 pmid: 23739964 |
[64] |
Rogers C,Reale V,Kim K,et al.Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1[J].Nat Neurosci,2003,6(11):1178-1185.
doi: 10.1038/nn1140 URL |
[65] |
Yan Y,Davis EL.Characterisation of guanylyl cyclase genes in the soybean cyst nematode, Heterodera glycines[J].Int J Parasitol,2002,32(1):65-72.
doi: 10.1016/S0020-7519(01)00315-0 URL |
[66] | Dutta TK,Banakar P,Rao U.The status of RNAi-based transgenic research in plant nematology[J].Front Microbiol,2014,5:760. |
[67] |
Lilley CJ,Davies LJ,Urwin PE.RNA interference in plant parasitic nematodes:a summary of the current status[J].Parasitology,2012,139(5):630-640.
doi: 10.1017/S0031182011002071 pmid: 22217302 |
[68] |
Dong L,Li X,Huang L,et al.Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection[J].J Exp Bot,2014,65(1):131-141.
doi: 10.1093/jxb/ert356 URL |
[69] | 彭焕,胡先奇,黄文坤,等.马铃薯腐烂茎线虫类FMRF酰胺多肽基因(Dd-flp-1)的克隆与表达定位分析[J].农业生物技术学报,2011,19(5):924-931. |
Peng H,Hu XQ,Huang WK,et al.Cloning and localization analysis of a novel FMRFamide-like neuropeptide gene(Dd-flp-1)from migration plant-parasitic nematode(Ditylenchus destructor)on sweet-potato in China[J].J Agric Biotechnol,2011,19(5):924-931. | |
[70] |
Kimber MJ,Fleming CC,Bjourson AJ,et al.FMRFamide-related peptides in potato cyst nematodes[J].Mol Biochem Parasitol,2001,116(2):199-208.
doi: 10.1016/S0166-6851(01)00323-1 URL |
[71] |
Kimber MJ,McKinney S,McMaster S,et al.Flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference[J].FASEB J,2007,21(4):1233-1243.
doi: 10.1096/fsb2.v21.4 URL |
[72] |
Kumari C,Dutta TK,Chaudhary S,et al.Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity[J].Gene,2017,619:50-60.
doi: 10.1016/j.gene.2017.03.042 URL |
[73] |
Warnock ND,Wilson L,Patten C,et al.Nematode neuropeptides as transgenic nematicides[J].PLoS Pathog,2017,13(2):e1006237.
doi: 10.1371/journal.ppat.1006237 URL |
[74] |
Bresso E,Fernandez D,Amora DX,et al.A chemosensory GPCR as a potential target to control the root-knot nematode Meloidogyne incognita parasitism in plants[J].Molecules,2019,24(20):3798.
doi: 10.3390/molecules24203798 URL |
[75] |
Wheeler NJ,Heimark ZW,Airs PM,et al.Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes[J].PLoS Biol,2020,18(6):e3000723.
doi: 10.1371/journal.pbio.3000723 URL |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[3] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[4] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[5] | 李潇凡, 耿丹丹, 毕瑜林, 江勇, 王志秀, 常国斌, 陈国宏, 白皓. miRNA的非经典作用机制研究进展[J]. 生物技术通报, 2022, 38(12): 1-10. |
[6] | 郭嫒, 姜牧炎, 哈力马提·巴合太力, 刘煜媛, 王静. 黑果枸杞茎叶响应NaCl胁迫合成花色苷的转录组学分析[J]. 生物技术通报, 2022, 38(10): 173-183. |
[7] | 张婵, 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根. 广藿香百秋李醇分子调控及合成生物学研究进展[J]. 生物技术通报, 2021, 37(8): 55-64. |
[8] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[9] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[10] | 金娜, 王学艳, 刘倩, 彭德良, 彭焕, 简恒. 土壤生物熏蒸对蔬菜根结线虫及土壤线虫群落的影响[J]. 生物技术通报, 2021, 37(7): 156-163. |
[11] | 舒洁, 张仁军, 梁应冲, 陈雅琼, 张娟, 郭建, 陈穗云. 植物源与微生物源生物制剂复配防治根结线虫病[J]. 生物技术通报, 2021, 37(7): 164-174. |
[12] | 张洁, 夏明聪, 朱文倩, 梁娟, 孙润红, 徐文, 武超, 杨丽荣. 蔬菜根结线虫生防芽胞杆菌的筛选及作用机理研究[J]. 生物技术通报, 2021, 37(7): 175-182. |
[13] | 邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34. |
[14] | 彭焕, 赵薇, 姚珂, 蒋陈, 黄文坤, 孔令安, 郑经武, 彭德良. 植物寄生线虫基因组学研究进展[J]. 生物技术通报, 2021, 37(7): 3-13. |
[15] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||