生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 150-156.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0479
阮航1,2(), 多浩源1, 范文艳1, 吕清晗1, 姜述君1(
), 朱生伟2(
)
收稿日期:
2022-04-17
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
阮航,女,硕士,研究方向:植物保护;E-mail: 基金资助:
RUAN Hang1,2(), DUO Hao-yuan1, FAN Wen-yan1, LV Qing-han1, JIANG Shu-jun1(
), ZHU Sheng-wei2(
)
Received:
2022-04-17
Published:
2023-01-26
Online:
2023-02-02
摘要:
盐碱胁迫是造成作物减产的主要逆境因素之一。植物AP2/ERF(APELATA2/ethylene response factors)转录因子在植物生长发育及其响应非生物逆境胁迫过程中发挥重要作用。探究AtERF49在拟南芥中对盐碱胁迫的应答,为深入解析AtERF49参与植物对盐碱胁迫的分子机理奠定基础。选取拟南芥野生型Col-0、过表达AtERF49转基因拟南芥和CRISPR/Cas9突变体erf49为试验材料,用150 mmol/L混合盐碱(摩尔比NaHCO3∶Na2CO3=9∶1)溶液进行处理,使用荧光定量PCR技术对该基因的基本特性、盐碱胁迫及光合响应基因表达模式等进行分析。结果表明,盐碱胁迫处理后,突变体erf49叶片萎蔫并发生白化,而过表达AtERF49植株叶片稍有变黄。此外,在盐碱胁迫条件下,过量表达AtERF49上调盐碱胁迫响应基因(RD29A和RAB18)以及光合响应基因rbcL的表达。拟南芥叶片叶绿素荧光参数测定结果表明,过表达AtERF49植株的光系统Ⅱ实际量子产能Y(Ⅱ)、光化学淬灭系数(qP)显著高于Col-0,光损伤程度(NO)和非光化学淬灭系数(qN)显著低于Col-0,而突变体erf49与之相反。因此,AtERF49通过调控下游盐碱胁迫响应基因的表达以及植物的光合作用效率,改变参与植物对盐碱胁迫的应答。
阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156.
RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis[J]. Biotechnology Bulletin, 2023, 39(1): 150-156.
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
RAB18-F | TCCAGCTCTAGCTCGGAGGATGA |
RAB18-R | GGATCCCATGCCGCCCATCG |
RD29A-F | GCCGGAATCTGACGGCGGTT |
RD29A-R | CCCGTCGGCACATCCTTGTCG |
AtUBC30-F | TCACTTCCCACCAGATTACCC |
AtUBC30-R | TCGACAGAAGAACCTTGGATACG |
AtERF49-F | AGACTACACCAAGCAGCAACACC |
AtERF49-R | TTGGATGAACACGGCGACTCAG |
rbcl-F | TTGGCAGCATTCCGAGTAACTCCT |
rbcl-R | CTGGTAAGTCCATCGGTCC |
psaA-F | CTACTTTGCCACCCACTGC |
psaA-R | TGAGTGCTTTAGGGCGTCC |
表1 荧光定量PCR AtERF49所用引物
Table 1 Primers used for fluorescence quantitative PCR
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
RAB18-F | TCCAGCTCTAGCTCGGAGGATGA |
RAB18-R | GGATCCCATGCCGCCCATCG |
RD29A-F | GCCGGAATCTGACGGCGGTT |
RD29A-R | CCCGTCGGCACATCCTTGTCG |
AtUBC30-F | TCACTTCCCACCAGATTACCC |
AtUBC30-R | TCGACAGAAGAACCTTGGATACG |
AtERF49-F | AGACTACACCAAGCAGCAACACC |
AtERF49-R | TTGGATGAACACGGCGACTCAG |
rbcl-F | TTGGCAGCATTCCGAGTAACTCCT |
rbcl-R | CTGGTAAGTCCATCGGTCC |
psaA-F | CTACTTTGCCACCCACTGC |
psaA-R | TGAGTGCTTTAGGGCGTCC |
图2 过表达AtERF49增强拟南芥对盐碱胁迫的抗性 A:盐碱胁迫处理前后AtERF49转基因拟南芥表型,标尺为2 cm;B:转基因株系中AtERF49的表达分析
Fig. 2 Overexpression of AtERF49 gene increasing Arabidopsis resistance to Saline-alkali stress A: Phenotypic analysis of AtERF49 transgenic Arabidopsis phenotype with Saline-alkali stress, the scale is 2 cm. B: Relative expression of AtERF49 in wild type and transgenic lines
图4 盐碱胁迫对转基因AtERF49拟南芥叶片叶绿素荧光参数的影响 A:能量耗散量子产能;B:光系统Ⅱ实际量子产量;C:非光化学淬灭系数;D:光化学淬灭系数
Fig. 4 Effects of Saline-alkali stress on the chlorophyll fluorescence parameters of leaves of AtERF49 transgenic Arabidopsis A: Energy dissipation quantum yield. B: Actual quantum yield of photosystem II. C: Coefficient of non-photochemical quenching. D: Coefficient of photochemical quenching
[1] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5): 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[2] | Zhang ZY, Abuduwaili J, Yimit H. The occurrence, sources and spatial characteristics of soil salt and assessment of soil Sal Inization risk in Yanqi Basin, northwest China[J]. PLoS One, 2014, 9(9): e106079. |
[3] |
Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: a review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291.
doi: 10.1016/j.bbrc.2017.11.043 URL |
[4] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor(AP2/ERF)transcription factors: mediators of stress responses and developmental programs[J]. New Phytol, 2013, 199(3): 639-649.
doi: 10.1111/nph.12291 URL |
[5] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6): 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[6] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[7] |
Papdi C, Pérez-Salamó I, Joseph MP, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3[J]. Plant J, 2015, 82(5): 772-784.
doi: 10.1111/tpj.12848 URL |
[8] |
Zhang LX, Li ZF, Quan RD, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiol, 2011, 157(2): 854-865.
doi: 10.1104/pp.111.179028 URL |
[9] |
Quan RD, Hu SJ, Zhang ZL, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnol J, 2010, 8(4): 476-488.
doi: 10.1111/j.1467-7652.2009.00492.x URL |
[10] |
Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4): 751-763.
doi: 10.1046/j.1365-313x.2003.01661.x pmid: 12609047 |
[11] |
Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol, 1999, 17(3): 287-291.
doi: 10.1038/7036 pmid: 10096298 |
[12] |
Savitch LV, Allard G, Seki M, et al. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus[J]. Plant Cell Physiol, 2005, 46(9): 1525-1539.
doi: 10.1093/pcp/pci165 pmid: 16024910 |
[13] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783 URL |
[14] |
Chandler JW. Class VIIIb APETALA2 ethylene response factors in plant development[J]. Trends Plant Sci, 2018, 23(2): 151-162.
doi: S1360-1385(17)30215-7 pmid: 29074232 |
[15] |
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol, 2003, 6(5): 410-417.
doi: 10.1016/s1369-5266(03)00092-x pmid: 12972040 |
[16] |
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol, 2000, 3(3): 217-223.
pmid: 10837265 |
[17] |
Shao GC, Lan JJ, Yu SE, et al. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages[J]. Photosynthetica, 2013, 51(3): 429-437.
doi: 10.1007/s11099-013-0039-9 URL |
[18] | 周艳虹, 黄黎锋, 喻景权. 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J]. 植物生理与分子生物学学报, 2004, 30(2): 153-160. |
Zhou YH, Huang LF, Yu JQ. Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves[J]. Acta Photophysiol Sin, 2004, 30(2): 153-160. | |
[19] |
van Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res, 1990, 25(3): 147-150.
doi: 10.1007/BF00033156 URL |
[20] | 郁飞, 唐崇钦, 辛越勇, 等. 光系统I(PSI)的结构与功能研究进展[J]. 植物学通报, 2001, 36(3): 266-275. |
Yu F, Tang CQ, Xin YY, et al. Progress in the structural and functional study of photosystem I[J]. Chin Bull Bot, 2001, 36(3): 266-275. | |
[21] | 邹铁祥, 戴廷波, 姜东, 等. 氮、钾水平对小麦花后旗叶光合特性的影响[J]. 作物学报, 2007, 33(10): 1667-1673. |
Zou TX, Dai TB, Jiang D, et al. Effects of nitrogen and potassium application levels on flag leaf photosynthetic characteristics after anthesis in winter wheat[J]. Acta Agron Sin, 2007, 33(10): 1667-1673. | |
[22] |
Collatz GJ. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis[J]. Planta, 1977, 134(2): 127-132.
doi: 10.1007/BF00384961 pmid: 24419690 |
[23] |
Scheller HV, Haldrup A. Photoinhibition of photosystem I[J]. Planta, 2005, 221(1): 5-8.
doi: 10.1007/s00425-005-1507-7 pmid: 15782347 |
[24] |
沈城, 刘楚吾, 刘丽. 温度胁迫及恢复初期稀杯盔形珊瑚共生虫黄藻Hsp70、Hsp90、psaA、psbA基因表达分析[J]. 热带海洋学报, 2016, 35(3): 72-78.
doi: 10.11978/2015056 |
Shen C, Liu CW, Liu L. Heat-induced stress genes Hsp70, Hsp90 and chloroplast psaA and psbA gene expressions of Galaxea astreata endosymbiotic Zooxanthella revealing the ability of tolerance and recovery[J]. J Trop Oceanogr, 2016, 35(3): 72-78. | |
[25] | 刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响[J]. 生态学报, 2019, 39(8): 2833-2841. |
Liu JX, Ou XB, Wang JC. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress[J]. Acta Ecol Sin, 2019, 39(8): 2833-2841. |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[4] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[5] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[6] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[7] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[8] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 高聪, 萧楚健, 鲁帅, 王苏蓉, 袁卉华, 曹云英. 氧化石墨烯对拟南芥生长的促进作用[J]. 生物技术通报, 2022, 38(6): 120-128. |
[11] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[12] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[13] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
[14] | 周娟, 阎晋东, 李新梅, 刘雪晴, 赵强, 赵小英. 拟南芥F-box蛋白FKF1与转录因子FUL互作调控开花研究[J]. 生物技术通报, 2022, 38(3): 1-8. |
[15] | 杨佳慧, 孙玉萍, 陆雅宁, 刘欢, 卢存福, 陈玉珍. 拟南芥AtTERT对大肠杆菌非生物胁迫抗性的影响[J]. 生物技术通报, 2022, 38(2): 1-9. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||