[1] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5): 635-674.
doi: 10.1007/s11427-020-1683-x
pmid: 32246404
|
[2] |
Zhang ZY, Abuduwaili J, Yimit H. The occurrence, sources and spatial characteristics of soil salt and assessment of soil Sal Inization risk in Yanqi Basin, northwest China[J]. PLoS One, 2014, 9(9): e106079.
|
[3] |
Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: a review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291.
doi: 10.1016/j.bbrc.2017.11.043
URL
|
[4] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor(AP2/ERF)transcription factors: mediators of stress responses and developmental programs[J]. New Phytol, 2013, 199(3): 639-649.
doi: 10.1111/nph.12291
URL
|
[5] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6): 750-776.
doi: 10.1080/07388551.2020.1768509
pmid: 32522044
|
[6] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299
URL
|
[7] |
Papdi C, Pérez-Salamó I, Joseph MP, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3[J]. Plant J, 2015, 82(5): 772-784.
doi: 10.1111/tpj.12848
URL
|
[8] |
Zhang LX, Li ZF, Quan RD, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiol, 2011, 157(2): 854-865.
doi: 10.1104/pp.111.179028
URL
|
[9] |
Quan RD, Hu SJ, Zhang ZL, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnol J, 2010, 8(4): 476-488.
doi: 10.1111/j.1467-7652.2009.00492.x
URL
|
[10] |
Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4): 751-763.
doi: 10.1046/j.1365-313x.2003.01661.x
pmid: 12609047
|
[11] |
Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol, 1999, 17(3): 287-291.
doi: 10.1038/7036
pmid: 10096298
|
[12] |
Savitch LV, Allard G, Seki M, et al. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus[J]. Plant Cell Physiol, 2005, 46(9): 1525-1539.
doi: 10.1093/pcp/pci165
pmid: 16024910
|
[13] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783
URL
|
[14] |
Chandler JW. Class VIIIb APETALA2 ethylene response factors in plant development[J]. Trends Plant Sci, 2018, 23(2): 151-162.
doi: S1360-1385(17)30215-7
pmid: 29074232
|
[15] |
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol, 2003, 6(5): 410-417.
doi: 10.1016/s1369-5266(03)00092-x
pmid: 12972040
|
[16] |
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol, 2000, 3(3): 217-223.
pmid: 10837265
|
[17] |
Shao GC, Lan JJ, Yu SE, et al. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages[J]. Photosynthetica, 2013, 51(3): 429-437.
doi: 10.1007/s11099-013-0039-9
URL
|
[18] |
周艳虹, 黄黎锋, 喻景权. 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J]. 植物生理与分子生物学学报, 2004, 30(2): 153-160.
|
|
Zhou YH, Huang LF, Yu JQ. Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves[J]. Acta Photophysiol Sin, 2004, 30(2): 153-160.
|
[19] |
van Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res, 1990, 25(3): 147-150.
doi: 10.1007/BF00033156
URL
|
[20] |
郁飞, 唐崇钦, 辛越勇, 等. 光系统I(PSI)的结构与功能研究进展[J]. 植物学通报, 2001, 36(3): 266-275.
|
|
Yu F, Tang CQ, Xin YY, et al. Progress in the structural and functional study of photosystem I[J]. Chin Bull Bot, 2001, 36(3): 266-275.
|
[21] |
邹铁祥, 戴廷波, 姜东, 等. 氮、钾水平对小麦花后旗叶光合特性的影响[J]. 作物学报, 2007, 33(10): 1667-1673.
|
|
Zou TX, Dai TB, Jiang D, et al. Effects of nitrogen and potassium application levels on flag leaf photosynthetic characteristics after anthesis in winter wheat[J]. Acta Agron Sin, 2007, 33(10): 1667-1673.
|
[22] |
Collatz GJ. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis[J]. Planta, 1977, 134(2): 127-132.
doi: 10.1007/BF00384961
pmid: 24419690
|
[23] |
Scheller HV, Haldrup A. Photoinhibition of photosystem I[J]. Planta, 2005, 221(1): 5-8.
doi: 10.1007/s00425-005-1507-7
pmid: 15782347
|
[24] |
沈城, 刘楚吾, 刘丽. 温度胁迫及恢复初期稀杯盔形珊瑚共生虫黄藻Hsp70、Hsp90、psaA、psbA基因表达分析[J]. 热带海洋学报, 2016, 35(3): 72-78.
doi: 10.11978/2015056
|
|
Shen C, Liu CW, Liu L. Heat-induced stress genes Hsp70, Hsp90 and chloroplast psaA and psbA gene expressions of Galaxea astreata endosymbiotic Zooxanthella revealing the ability of tolerance and recovery[J]. J Trop Oceanogr, 2016, 35(3): 72-78.
|
[25] |
刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响[J]. 生态学报, 2019, 39(8): 2833-2841.
|
|
Liu JX, Ou XB, Wang JC. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress[J]. Acta Ecol Sin, 2019, 39(8): 2833-2841.
|