生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 261-269.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0133
收稿日期:
2023-02-15
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
王玉书,女,博士,教授,研究方向:园艺植物分子生物学;E-mail: wangys1019@126.com作者简介:
杨旭妍,女,硕士研究生,研究方向:园艺植物分子生物学;E-mail: yangxy1219@126.com
基金资助:
YANG Xu-yan(), ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu()
Received:
2023-02-15
Published:
2023-11-26
Online:
2023-12-20
摘要:
WRKY蛋白质是一类参与植物生长发育、生物和非生物胁迫以及其他生物过程的转录因子。研究甘蓝WRKY基因在逆境胁迫下的响应机制,为进一步研究BoWRKYs的抗逆功能奠定基础。以甘蓝(Brassica oleracea var. capitata L.)幼苗为试材,RT-PCR克隆BoWRKY40(BolC02g035760.2J)、BoWRKY46(BolC04g031460.2J)和BoWRKY70(BolC04g035730.2J)3个BoWRKYs;采用同源重组法构建pSuper1300: BoWRKYs -GFP载体,进行亚细胞定位;实时荧光定量PCR检测BoWRKYs在ABA、PEG8000和NaCl胁迫下的响应模式。结果表明,BoWRKY40、BoWRKY46和BoWRKY70的cDNA全长分别为873、831和864 bp,分别编码290、276和287个氨基酸,预测蛋白分子量为32.41、32.08和32.52 kD,理论等电点为6.77、6.18和5.62;多重比对分析发现3个BoWRKY蛋白结构域与拟南芥、番茄、玉米和棉花的WRKY结构域高度相似;亚细胞定位显示,3个BoWRKY蛋白主要定位于细胞核;荧光定量PCR分析显示,BoWRKYs在ABA、PEG8000和NaCl胁迫下受到不同程度的诱导。其中,BoWRKY40能积极响应3种胁迫,而BoWRKY46和BoWRKY70在ABA和盐胁迫下表达上调,在PEG8000处理后表达水平逐渐降低。甘蓝BoWRKY40、BoWRKY46和BoWRKY70表达与逆境胁迫响应关系密切。
杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269.
YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress[J]. Biotechnology Bulletin, 2023, 39(11): 261-269.
应用Application | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
基因克隆Gene cloning | BoWRKY40 | F: ATGGACCAGTACCCATCGTCTTTG R: CTACTTGTCGGTTTGATTCTGTTGG |
BoWRKY46 | F: ATGTTAATGGAAGAAAAGCTTGTG R: TTACATCCACGACAAATCTTGAG | |
BoWRKY70 | F: ATGGATATTGTTAGTAATAACAAAGC R: TCATTGTCGTTGAACCGGAAATC | |
实时荧光定量PCR Real-time PCR | qBoWRKY40 | F: GGTGCTGCCAACAGAAGTAGGAG R: GGGCTTGTCACTTTCTTGGTTTCAG |
qBoWRKY46 | F: AAGAGGTTGCTTGGCGGTGAAG R: AGAGTGTTTGGTGGTTGATGGAGTG | |
qBoWRKY70 | F: AACCCATCCCCTCCTATCTCTTCAC R: ATCCTCAAGTTTGCCGTCGTTGG | |
BoActin2 | F: CGTGACCTTACTGACTACC R: CTCCATCTCCTGCTCGTA | |
表达载体Expression vector | BoWRKY40 | F: ctgcaggggcccggggtcgacATGGACCAGTACCCATCGTCTTTG R: gcccttgctcaccatggtaccCTACTTGTCGGTTTGATTCTGTTGG |
BoWRKY46 | F: ctgcaggggcccggggtcgaccATGTTAATGGAAGAAAAGCTTGTG R: gcccttgctcaccatggtaccTTACATCCACGACAAATCTTGAG | |
BoWRKY70 | F:ctgcaggggcccggggtcgacATGGATATTGTTAGTAATAACAAAGC R: gcccttgctcaccatggtaccTCATTGTCGTTGAACCGGAAATC |
表1 引物列表
Table 1 List of primers
应用Application | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
基因克隆Gene cloning | BoWRKY40 | F: ATGGACCAGTACCCATCGTCTTTG R: CTACTTGTCGGTTTGATTCTGTTGG |
BoWRKY46 | F: ATGTTAATGGAAGAAAAGCTTGTG R: TTACATCCACGACAAATCTTGAG | |
BoWRKY70 | F: ATGGATATTGTTAGTAATAACAAAGC R: TCATTGTCGTTGAACCGGAAATC | |
实时荧光定量PCR Real-time PCR | qBoWRKY40 | F: GGTGCTGCCAACAGAAGTAGGAG R: GGGCTTGTCACTTTCTTGGTTTCAG |
qBoWRKY46 | F: AAGAGGTTGCTTGGCGGTGAAG R: AGAGTGTTTGGTGGTTGATGGAGTG | |
qBoWRKY70 | F: AACCCATCCCCTCCTATCTCTTCAC R: ATCCTCAAGTTTGCCGTCGTTGG | |
BoActin2 | F: CGTGACCTTACTGACTACC R: CTCCATCTCCTGCTCGTA | |
表达载体Expression vector | BoWRKY40 | F: ctgcaggggcccggggtcgacATGGACCAGTACCCATCGTCTTTG R: gcccttgctcaccatggtaccCTACTTGTCGGTTTGATTCTGTTGG |
BoWRKY46 | F: ctgcaggggcccggggtcgaccATGTTAATGGAAGAAAAGCTTGTG R: gcccttgctcaccatggtaccTTACATCCACGACAAATCTTGAG | |
BoWRKY70 | F:ctgcaggggcccggggtcgacATGGATATTGTTAGTAATAACAAAGC R: gcccttgctcaccatggtaccTCATTGTCGTTGAACCGGAAATC |
图2 3个BoWRKYs顺式作用元件分析 ABRE:脱落酸响应;ARE:厌氧诱导;AuxRR-core:生长素响应;CAT-box:分生组织表达;CGTCA-motif:茉莉酸甲酯响应;G-box:光响应;MBS:参与干旱诱导的MYB结合位点; TCA-element:水杨酸响应; GARE-motif:赤霉素响应;LTR:低温响应;TC-rich repeats:防御和应激反应;W-box:WRKY结合位点
Fig. 2 Cis-elements of three BoWRKY genes ABRE: Abscisic acid responsiveness; ARE: anaerobic induction; AuxRR-core: auxin responsiveness; CAT-box: meristem expression; CGTCA-motif: MeJA-responsiveness; G-box: light responsiveness; MBS: MYB binding site involved in drought-inducibility; TCA-element: salicylic acid responsiveness; GARE-motif: gibberellin-responsive; LTR: low-temperature responsiveness; TC-rich repeats: defense and stress responsiveness; W-box: WRKY binding site
图3 3个BoWRKYs与其他物种WRKY保守结构域多序列比对 Bo:甘蓝;Bra:油菜;At:拟南芥;Gh:陆地棉。下同
Fig. 3 Multiple alignment of conserved domains of 3 BoWRKYs and WRKY from other plant species Bo: B. oleracea var. capitata; Bra: Brassica napus; At: Arabidopsis thaliana; Gh: Gossypium hirsutum. The same below
图4 BoWRKYs与其他物种WRKY蛋白系统的进化树分析 Sl:番茄;St:马铃薯
Fig. 4 A phylogenetic tree of BoWRKYs and WRKY proteins from other plant species Sl: Solanum lycopercicum; St: Solanum tuberosum
图7 BoWRKYs在非生物胁迫下的表达分析 图中误差线表示标准误差。小写字母表示不同处理时间基因表达量达到(P<0.05)显著水平
Fig. 7 Expression patterns of BoWRKYs gene under abiotic stresses The error line in the figure refers to the standard deviation. The lowercase letters indicate that the gene expression level reached(P<0.05)significant level at different treatment times
[1] |
曾爱松, 刘玉梅, 方智远, 等. 结球甘蓝耐裂球研究进展[J]. 植物遗传资源学报, 2011, 12(2): 307-310.
doi: 10.13430/j.cnki.jpgr.2011.02.022 |
Zeng AS, Liu YM, Fang ZY, et al. Research progress of head splitting on cabbage(Brassica oleracea l. var. capitata L.)[J]. J Plant Genet Resour, 2011, 12(2): 307-310. | |
[2] |
Jiang Y, Zeng B, Zhao HN, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. J Integ Plant Biol, 2012, 54(9): 616-630.
doi: 10.1111/jipb.2012.54.issue-9 URL |
[3] |
Wu Z, Liang JH, Wang CP, et al. Overexpression of lily HsfA3s in Arabidopsis confer increased thermotolerance and salt sensitivity via alterations in proline catabolism[J]. J Exp Bot, 2018, 69(8): 2005-2021.
doi: 10.1093/jxb/ery035 URL |
[4] |
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molec Gen Genet, 1994, 244(6): 563-571.
doi: 10.1007/BF00282746 URL |
[5] |
Rushton PJ, Torres JT, Parniske M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO J, 1996, 15(20): 5690-5700.
pmid: 8896462 |
[6] |
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9 pmid: 10785665 |
[7] |
Zhang YJ, Wang LJ. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants[J]. BMC Evol Biol, 2005, 5(1): 1.
doi: 10.1186/1471-2148-5-1 URL |
[8] |
Dai WS, Wang M, Gong XQ, et al. The transcription factor FcWRK-Y40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs[J]. New Phytol, 2018, 219(3): 972-989.
doi: 10.1111/nph.2018.219.issue-3 URL |
[9] | 蒋明月, 苏晓帅, 张宝华, 等. 小麦TaWRKY46介导转基因烟草耐盐性的功能分析[J]. 农业生物技术学, 2020, 28(10): 1733-1746. |
Jiang MY, Su XS, Zhang BH, et al. Function analysis of wheat(Triticum aestivum)TaWRKY46 gene in mediating salt stress tolerance in transgenic tobacco(Nicotiana tabacum)[J]. J Agric Biotechnol, 2020, 28(10): 1733-1746. | |
[10] |
Sen S, Chakraborty J, Ghosh P, et al. Chickpea WRKY70 regulates the expression of a homeodomain-leucine zipper(HD-zip)I transcription factor CaHDZ12, which confers abiotic stress tolerance in transgenic tobacco and chickpea[J]. Plant Cell Physiol, 2017, 58(11): 1934-1952.
doi: 10.1093/pcp/pcx126 URL |
[11] | 车永梅, 孙艳君, 卢松冲, 等. AtWRKY40参与拟南芥干旱胁迫响应过程[J]. 植物生理学报, 2018, 54(3): 456-464. |
Che YM, Sun YJ, Lu SC, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana[J]. Plant Physiol J, 2018, 54(3): 456-464. | |
[12] |
Chen H, Lai ZB, Shi JW, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biol, 2010, 10: 281.
doi: 10.1186/1471-2229-10-281 pmid: 21167067 |
[13] | Chen JN, Nolan TM, Ye HX, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. |
[14] | 董秋燕. 拟南芥WRKY46和WRKY53参与植物抗盐的分子机制初步研究[D]. 北京: 中国科学院大学, 2013. |
Dong QY. Preliminary study on the molecular mechanism of Arabidopsis WRKY46 and WRKY53 participating in salt tolerance in plants[D]. Beijing: University of Chinese Academy of Sciences, 2013. | |
[15] |
Liu GY, Li B, Li X, et al. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism[J]. Plant Physiol Biochem, 2020, 156: 155-166.
doi: 10.1016/j.plaphy.2020.09.015 URL |
[16] |
Ülker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5): 491-498.
doi: 10.1016/j.pbi.2004.07.012 pmid: 15337090 |
[17] |
Wei KF, Chen J, Chen YF, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize[J]. DNA Res, 2012, 19(2): 153-164.
doi: 10.1093/dnares/dsr048 URL |
[18] |
Xu HJ, Watanabe KA, Zhang LY, et al. WRKY transcription factor genes in wild rice Oryza nivara[J]. DNA Res, 2016, 23(4): 311-323.
doi: 10.1093/dnares/dsw025 URL |
[19] |
Bencke-Malato M, Cabreira C, Wiebke-Strohm B, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biol, 2014, 14: 236.
doi: 10.1186/s12870-014-0236-0 pmid: 25201117 |
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
Yang XY, Zhao S, Ge WD, et al. Genome-wide identification and expression analysis of the WRKY gene family in cabbage(Brassica oleracea var. capitata L.)[J]. Biotechnol Biotechnol equip, 2022, 36(1): 759-772.
doi: 10.1080/13102818.2022.2110518 URL |
[22] |
Zhou QY, Tian AG, Zou HF, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabi-dopsis plants[J]. Plant Biotechnol J, 2008, 6(5): 486-503.
doi: 10.1111/pbi.2008.6.issue-5 URL |
[23] |
Chen M, Tan QP, Sun MY, et al. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy[J]. Mol Genet Genomics, 2016, 291(3): 1319-1332.
doi: 10.1007/s00438-016-1171-6 pmid: 26951048 |
[24] |
Yang B, Jiang YQ, Rahman MH, et al. Identification and expression analysis of WRKY transcription factor genes in canola(Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9: 68.
doi: 10.1186/1471-2229-9-68 pmid: 19493335 |
[25] |
Miri M, Ghooshchi F, Tohidi-Moghadam HR, et al. Ameliorative effects of foliar spray of glycine betaine and gibberellic acid on Cowpea(Vigna unguiculata L. Walp.) yield affected by drought stress[J]. Arab J Geosci, 2021, 14(10): 830.
doi: 10.1007/s12517-021-07228-7 |
[26] | 白雪. CsWRKY46基因参与盐胁迫的表达特征与功能分析[D]. 沈阳: 沈阳师范大学, 2020. |
Bai X. Expression characteristics and functional analysis of CsWRKY46 gene involved in salt stress[D]. Shenyang: Shenyang Normal University, 2020. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[3] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[4] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[5] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[6] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[7] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[10] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[11] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[12] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[13] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[14] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[15] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||