生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 196-205.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0714
刘思佳1,2(), 王浩楠1,2, 付宇辰3, 闫文欣1,2, 胡增辉1,2, 冷平生1,2()
收稿日期:
2022-06-10
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
冷平生,男,博士,教授,研究方向:园林植物与观赏园艺; E-mail: lengpsh@tom.com作者简介:
刘思佳,女,硕士研究生,研究方向:园林植物与观赏园艺; E-mail: lsj18445355286@163.com
基金资助:
LIU Si-jia1,2(), WANG Hao-nan1,2, FU Yu-chen3, YAN Wen-xin1,2, HU Zeng-hui1,2, LENG Ping-sheng1,2()
Received:
2022-06-10
Published:
2023-03-26
Online:
2023-04-10
摘要:
4-二磷酸胞苷-2-C-甲基赤藓糖激酶(CMK)是萜类花香合成甲基赤藓糖醇磷酸(MEP)途径的关键酶,为揭示其对百合花香的调控作用,从‘西伯利亚’百合(Lilium ‘Siberia’)中克隆LiCMK基因,进行生物信息学分析,利用亚细胞定位确定蛋白位置,采用荧光定量PCR技术检测基因时空表达模式,并运用病毒诱导基因沉默(VIGS)方法瞬时沉默LiCMK,验证其功能。结果显示,LiCMK全长1 200 bp,编码399个氨基酸,属于IspE家族,与油棕(Elaeis guineensis)中的CMK相似度最高。LiCMK的表达随花期呈现先上升后降低的规律,在盛花期的表达量达到峰值,在花器官中的表达量明显高于茎、叶中的表达量。LiCMK蛋白定位于叶绿体中。LiCMK在百合中瞬时沉默后,LiCMK表达水平下降了约84%,主要的单萜合成基因表达量明显下降,月桂烯合酶基因(MYS)、罗勒烯合酶基因(OCS)和芳樟醇合酶基因(LIS)分别降低了57%、59%和63%,主要的单萜类化合物月桂烯、罗勒烯和芳樟醇释放量显著下降。结果表明,LiCMK基因对‘西伯利亚’百合单萜化合物的合成与花香释放有重要作用,为后续深入研究百合单萜合成及其花香释放的调控机制奠定基础。
刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205.
LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’[J]. Biotechnology Bulletin, 2023, 39(3): 196-205.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
LiCMK-F | ATGGCCTCCTCTCACCT |
LiCMK-R | TTATTCGGTTGCTGCTGCTG |
qLiCMK-F | CCGATAACTTCTTCTGGATTCATCT |
qLiCMK-R | GCCTGACCATTCTTGTAACTCTT |
qLiLIS-F | TCGCCTTGTTGAGATCATCCTCTTC |
qLiLIS-R | TGTCTCCACGGAGCTGCTGTT |
qLiOCS-F | TCCGCCAATTACCACCCAACCA |
qLiOCS-R | GCTGAGCCACTGGATCGTCTGA |
qLiMYS-F | GACTTGTTGGAGCCATGTCTTAGAGA |
qLiMYS-R | AACTCAACTCGTCGCCAAGAAGT |
β-Actin-F | CGGTGTCTGGATTGGAGGGTCA |
β-Actin-R | TTCGCTTTAGGACTTCGGGT |
LiCMK-SF | AGTGGTCTCTGTCCAGTCCTATGGCCTCCTCTCACCT |
LiCMK-SR | GGTCTCAGCAGACCACAAGTTTCGGTTGCTGCTGCTG |
LiCMK-TF | AGTGGTCTCTGTCCAGTCCTATGGCCTCCTCTCACCT |
LiCMK-TR | GGTCTCAGCAGACCACAAGTCAACCCAGCCTGCTTATCC |
表1 引物序列
Table1 Primer sequences
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
LiCMK-F | ATGGCCTCCTCTCACCT |
LiCMK-R | TTATTCGGTTGCTGCTGCTG |
qLiCMK-F | CCGATAACTTCTTCTGGATTCATCT |
qLiCMK-R | GCCTGACCATTCTTGTAACTCTT |
qLiLIS-F | TCGCCTTGTTGAGATCATCCTCTTC |
qLiLIS-R | TGTCTCCACGGAGCTGCTGTT |
qLiOCS-F | TCCGCCAATTACCACCCAACCA |
qLiOCS-R | GCTGAGCCACTGGATCGTCTGA |
qLiMYS-F | GACTTGTTGGAGCCATGTCTTAGAGA |
qLiMYS-R | AACTCAACTCGTCGCCAAGAAGT |
β-Actin-F | CGGTGTCTGGATTGGAGGGTCA |
β-Actin-R | TTCGCTTTAGGACTTCGGGT |
LiCMK-SF | AGTGGTCTCTGTCCAGTCCTATGGCCTCCTCTCACCT |
LiCMK-SR | GGTCTCAGCAGACCACAAGTTTCGGTTGCTGCTGCTG |
LiCMK-TF | AGTGGTCTCTGTCCAGTCCTATGGCCTCCTCTCACCT |
LiCMK-TR | GGTCTCAGCAGACCACAAGTCAACCCAGCCTGCTTATCC |
图3 ‘西伯利亚’百合LiCMK基因扩增产物电泳 M:DL2000 DNA marker;1:LiCMK扩增产物
Fig. 3 Electrophoresis of amplified products of LiCMK gene in Lilium ‘Siberia’ M: DL2000 DNA marker. 1: Amplified products of LiCMK gene
图4 LiCMK蛋白与其他植物CMK同源性比对 黑色:同源性=100%;灰色:同源性≥75%;浅灰色:同源性 ≥50%
Fig. 4 Homology comparison between LiCMK and CMK in other plants Black: The homology=100%. Grayness: The homology≥75%. Light grey: The homology≥50%
图7 ‘西伯利亚’百合LiCMK蛋白质二级结构的预测 蓝色为α-螺旋,红色为延伸链,绿色为β-转角,紫色为无规卷曲
Fig. 7 Prediction of secondary structure of LiCMK protein in Lilium ‘Siberia’ The blue is α-helix, red is extended strand, green is beta turn, and purple is random coil
图9 ‘西伯利亚’百合LiCMK在不同花期与不同组织的表达分析 图中误差线表示标准偏差,不同小写字母表示差异显著P<0.05,下同
Fig. 9 Expression analysis of LiCMK in Lilium ‘Siberia’ at different flowering stages and LiCMK in different tissues The error line in the figure refers to the standard deviation. Different lowercase letters indicate significantly different at P<0.05. The same below
图10 ‘西伯利亚’百合 LiCMK亚细胞定位 从左到右依次为目标蛋白荧光通道、明场、叶绿体荧光通道、叠加图
Fig. 10 Subcellular localization of LiCMK protein in Lilium ‘Siberia’ There are the target protein fluorescence channel, bright field, chloroplast fluorescence channel and merged one from left to right
图11 野生型组与阴性对照组‘西伯利亚’百合花朵比较与LiCMK基因沉默效率
Fig. 11 Comparison of Lilium ‘Siberia’ flowers between WT and pTRV2 groups and the silencing efficiency of gene LiCMK
图12 ‘西伯利亚’百合中LiCMK基因沉默对单萜合酶基因表达(A)及单萜释放量的影响(B)
Fig. 12 Effects of LiCMK silencing on the monoterpene synthase gene expression(A)and monoterpene release(B)in Lilium ‘Siberia’
[1] | 孔滢, 等. 花香代谢与调控研究进展[J]. 北京林业大学学报, 2012, 34(2): 146-154. |
Kong Y, et al. Advances in metabolism and regulation of floral scent[J]. J Beijing For Univ, 2012, 34(2): 146-154. | |
[2] |
Majetic CJ, Raguso RA, Ashman TL. The sweet smell of success: floral scent affects pollinator attraction and seed fitness in Hesperis matronalis[J]. Funct Ecol, 2009, 23(3): 480-487.
doi: 10.1111/fec.2009.23.issue-3 URL |
[3] |
Unsicker SB, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores[J]. Curr Opin Plant Biol, 2009, 12(4): 479-485.
doi: 10.1016/j.pbi.2009.04.001 pmid: 19467919 |
[4] |
孙丽超, 李淑英, 王凤忠, 等. 萜类化合物的合成生物学研究进展[J]. 生物技术通报, 2017, 33(1): 64-75.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.007 |
Sun LC, Li SY, Wang FZ, et al. Research progresses in the synthetic biology of terpenoids[J]. Biotechnol Bull, 2017, 33(1): 64-75.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.007 |
|
[5] |
Abbas F, Ke YG, Yu RC, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering[J]. Planta, 2017, 246(5): 803-816.
doi: 10.1007/s00425-017-2749-x pmid: 28803364 |
[6] |
Ramya M, An HR, Baek YS, et al. Orchid floral volatiles: Biosynthesis genes and transcriptional regulations[J]. Sci Hortic, 2018, 235: 62-69.
doi: 10.1016/j.scienta.2017.12.049 URL |
[7] | 徐瑾, 等. 菊花不同花期及花序不同部位香气成分和挥发研究[J]. 西北植物学报, 2012, 32(4): 722-730. |
Xu J, et al. Studies of aroma compounds in Chrysanthemum in different florescence and inflorescence parts and aroma releasing[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(4): 722-730. | |
[8] | 夏科, 蒋柏生, 赵志国, 等. 桂林地区不同桂花品种花香成分比较分析[J]. 广西植物, 2018, 38(11): 1493-1504. |
Xia K, Jiang BS, Zhao ZG, et al. Comparative analysis of aromatic components from different cultivars of Osmanthus fragrans in Guilin[J]. Guihaia, 2018, 38(11): 1493-1504. | |
[9] |
Feng LG, Chen C, Li TL, et al. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose(Rosa rugosa Thunb.)[J]. Plant Physiol Biochem, 2014, 75: 80-88.
doi: 10.1016/j.plaphy.2013.12.006 URL |
[10] |
Yue YC, Yu RC, Fan YP. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronari-um[J]. BMC Genomics, 2015, 16(1): 470.
doi: 10.1186/s12864-015-1653-7 URL |
[11] |
Lee GW, Chung MS, Lee SS, et al. Transcriptome-guided identification and functional characterization of key terpene synthases involved in constitutive and methyl jasmonate-inducible volatile terpene formation in Eremochloa ophiuroides(Munro)Hack[J]. Plant Physiol Biochem, 2019, 141: 193-201.
doi: 10.1016/j.plaphy.2019.05.032 URL |
[12] |
Du F, Wang T, Fan JM, et al. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes[J]. Hortic Res, 2019, 6: 110.
doi: 10.1038/s41438-019-0192-9 |
[13] | 郑冉冉, 吴景芝, 谷志佳, 等. 玫瑰香味玫红百合和橙香味紫红花滇百合的花香成分研究[J]. 浙江大学学报: 农业与生命科学版, 2021, 47(1): 32-42. |
Zheng RR, Wu JZ, Gu ZJ, et al. Study on the floral scent components of Lilium amoenum with rose fragrance and Lilium baker-ianum var. rubrum with orange fragrance[J]. J Zhejiang Univ Agric Life Sci, 2021, 47(1): 32-42. | |
[14] |
Hu ZH, Tang B, Wu Q, et al. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano’[J]. Front Plant Sci, 2017, 8: 1351.
doi: 10.3389/fpls.2017.01351 URL |
[15] |
Muhlemann JK, et al. Floral volatiles: from biosynthesis to function[J]. Plant Cell Environ, 2014, 37(8): 1936-1949.
doi: 10.1111/pce.12314 URL |
[16] |
Rohdich F, Lauw S, Kaiser J, et al. Isoprenoid biosynthesis in plants - 2C-methyl-D-erythritol-4-phosphate synthase(IspC protein)of Arabidopsis thaliana[J]. FEBS J, 2006, 273(19): 4446-4458.
pmid: 16972937 |
[17] |
Dudareva N, et al. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily[J]. Plant Cell, 2003, 15(5): 1227-1241.
doi: 10.1105/tpc.011015 pmid: 12724546 |
[18] |
Orlova I, Nagegowda DA, Kish CM, et al. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta[J]. Plant Cell, 2009, 21(12): 4002-4017.
doi: 10.1105/tpc.109.071282 URL |
[19] |
Dudareva N, Cseke L, Blanc VM, et al. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower[J]. Plant Cell, 1996, 8(7): 1137-1148.
doi: 10.1105/tpc.8.7.1137 pmid: 8768373 |
[20] |
Gao FZ, et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida[J]. J Exp Bot, 2018, 69(18): 4249-4265.
doi: 10.1093/jxb/ery224 URL |
[21] |
Zhang TX, Sun M, Guo YH, et al. Overexpression of LiDXS and LiDXR from lily(Lilium ‘Siberia’)enhances the terpenoid content in tobacco flowers[J]. Front Plant Sci, 2018, 9: 909.
doi: 10.3389/fpls.2018.00909 URL |
[22] | 马波, 等. ‘西伯利亚’百合LiMCT基因的克隆及表达特性分析[J]. 分子植物育种, 2020, 18(18): 5933-5942. |
Ma B, et al. Cloning and expression characteristic analysis of LiMCT gene in Lilium ‘Siberia’[J]. Mol Plant Breed, 2020, 18(18): 5933-5942. | |
[23] | 张茜, 罗景琳, 王浩楠, 等. 百合花香合成相关基因LiMCS的克隆、定位和表达特性研究[J]. 西北农业学报, 2022, 31(8):981-989. |
Zhang X, Luo JL, Wang HN, et al. Cloning, localization and expression characteristics of flower fragrance synthesis related gene LiMCS in Lilium[J]. Acta Agric Boreali Occidentalis Sin, 2022, 31(8):981-989. | |
[24] |
Zhang TX, Guo YH, Shi XJ, et al. Overexpression of LiTPS2 from a cultivar of lily(Lilium ‘Siberia’)enhances the monoterpenoids content in tobacco flowers[J]. Plant Physiol Biochem, 2020, 151: 391-399.
doi: 10.1016/j.plaphy.2020.03.048 URL |
[25] |
Rohdich F, et al. Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2000, 97(12): 6451-6456.
doi: 10.1073/pnas.97.12.6451 pmid: 10841550 |
[26] |
Ahn CS, Pai HS. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana[J]. Plant Mol Biol, 2008, 66(5): 503-517.
doi: 10.1007/s11103-007-9286-0 URL |
[27] | 乔洋洋. 盾叶薯蓣CMK基因和HDS基因的克隆与功能验证[D]. 武汉: 湖北大学, 2017. |
Qiao YY. Fuctional cloning of CMK gene and HDS gene from Dio-scorea zingiberensis C.H wright[D]. Wuhan: Hubei University, 2017. | |
[28] | 范雨芳, 张曼, 向礼恩, 等. 黄花蒿CMK基因的克隆与功能分析[J]. 中国中药杂志, 2018, 43(11): 2254-2260. |
Fan YF, Zhang M, Xiang LE, et al. Molecular cloning and characterization of CMK from Artemisia annua[J]. China J Chin Mater Med, 2018, 43(11): 2254-2260. | |
[29] | 汪周勇, 等. 金银花类药用植物IspE和IspH基因克隆和生物信息学分析[J]. 中国中药杂志, 2013, 38(1): 32-36. |
Wang ZY, et al. Cloning and bioinformatic analysis of IspE and IspH genes in Lonicera japonica and its substitutes[J]. China J Chin Mater Med, 2013, 38(1): 32-36. | |
[30] | Tang B, et al. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages[J]. Plant Sci J, 2018, 36(2): 252-263. |
[31] | 张曼. 青蒿AaCMK、AaMCT、AaMCS基因的克隆与功能分析[D]. 重庆: 西南大学, 2016. |
Zhang M. Molecular cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase gene, 4-(cytidine 5'-diphospho)-2-C-methylery-thritol kinase gene, 2-C-methylerythritol-2, 4-cyclodiphosphate synthase gene from Artemisia annua L.[D]. Chongqing: Southwest University, 2016. | |
[32] |
Gong YF, Liao ZH, Guo BH, et al. Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Planta Med, 2006, 72(4): 329-335.
doi: 10.1055/s-2005-916234 URL |
[33] |
Rohdich F, et al. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from tomato[J]. Proc Natl Acad Sci USA, 2000, 97(15): 8251-8256.
doi: 10.1073/pnas.140209197 pmid: 10880567 |
[34] | 童宇茹, 苏平, 赵瑜君, 等. 雷公藤4-(5'-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶基因的全长克隆与表达分析[J]. 中国中药杂志, 2015, 40(21): 4165-4170. |
Tong YR, Su P, Zhao YJ, et al. Cloning and expression analysis of 4-(cytidine-5-diphospho)-2-Cmethyl-D-erythritol kinase gene in Tripterygium wilfordii[J]. China J Chin Mater Med, 2015, 40(21): 4165-4170. | |
[35] | 刘梦丽, 余函纹, 李景, 等. 桔梗中PgMCT和PgCMK的克隆及原核表达分析[J]. 中成药, 2022, 44(5): 1600-1605. |
Liu ML, Yu HW, Li J, et al. Cloning and prokaryotic expression analysis of PgMCT and PgCMK in Platycodon grandiflorus[J]. Chin Tradit Pat Med, 2022, 44(5): 1600-1605. | |
[36] | 袁媛, 孙叶, 等. 植物花香代谢和基因工程研究进展[J]. 南方园艺, 2017, 28(5): 48-52. |
Yuan Y, Sun Y, et al. Advances in floral metabolism and gene engineering in plants[J]. South Hortic, 2017, 28(5): 48-52. | |
[37] |
王淋, 等. 杜仲MVA和MEP途径相关基因的亚细胞定位与表达分析[J]. 植物研究, 2017, 37(1): 52-62.
doi: 10.7525/j.issn.1673-5102.2017.01.008 |
Wang L, et al. Subcellular localization and expression analysis of genes from Eucommia ulmoides involved in MVA and MEP pathway[J]. Bull Bot Res, 2017, 37(1): 52-62. |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[7] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[8] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[9] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[10] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[11] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[12] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[13] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[14] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[15] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||