生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 52-58.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0784
收稿日期:
2022-06-25
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
肖春桥,男,博士,教授,研究方向:环境生态;E-mail :chunqiao@wit.edu.cn作者简介:
张华香,女,硕士,副教授,研究方向:生态工程;E-mail :648230158@qq.com
基金资助:
ZHANG Hua-xiang1(), XU Xiao-ting1, ZHENG Yun-ting2, XIAO Chun-qiao2()
Received:
2022-06-25
Published:
2023-03-26
Online:
2023-04-10
摘要:
钝化和植物修复是重金属污染土壤修复的重要技术手段,而溶磷微生物可进一步增强钝化和植物修复重金属污染土壤的作用。介绍了钝化和植物修复重金属污染土壤的基本原理,总结了溶磷微生物对土壤中难溶性磷酸盐的溶解、利用磷酸盐钝化修复重金属污染土壤、溶磷微生物对磷酸盐钝化修复的强化以及溶磷微生物强化植物修复重金属污染土壤的研究进展,探讨了溶磷微生物对重金属的抗性及其溶磷机理、溶磷微生物对磷酸盐钝化修复重金属污染土壤的强化作用机理以及溶磷微生物强化植物修复重金属污染土壤的作用机理。旨在为生物修复重金属污染土壤研究提供一定的理论依据和技术支撑。
张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58.
ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil[J]. Biotechnology Bulletin, 2023, 39(3): 52-58.
图2 溶磷微生物对磷酸盐钝化修复重金属污染土壤的强化作用机理
Fig. 2 Enhancement mechanism of phosphate passivation and remediation of heavy metal contaminated soil by phosphate-solubilizing microorganism
[1] |
Peng JF, Song YH, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. J Hazard Mater, 2009, 161(2-3): 633-640.
doi: 10.1016/j.jhazmat.2008.04.061 URL |
[2] | 林钰栅, 范缙, 蔡邦平, 等. 解磷微生物在重金属污染原位修复中的作用及其机理研究进展[J]. 厦门大学学报: 自然科学版, 2016, 55(5): 697-706. |
Lin YS, Fan J, Cai BP, et al. Progress on roles and mechanisms of phosphate-solubilizing microorganisms in remediation of heavy metal contaminated soils[J]. J Xiamen Univ Nat Sci, 2016, 55(5): 697-706. | |
[3] | 胡红青, 黄益宗, 黄巧云, 等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1676-1685. |
Hu HQ, Huang YZ, Huang QY, et al. Research progress of heavy metals chemical immobilization in farm land[J]. J Plant Nutr Fertil, 2017, 23(6): 1676-1685. | |
[4] |
Cao XD, Ma LQ, Chen M, et al. Lead transformation and distribution in the soils of shooting ranges in Florida, USA[J]. Sci Total Environ, 2003, 307(1-2-3): 179-189.
doi: 10.1016/S0048-9697(02)00543-0 URL |
[5] |
Peng X, Deng YE, Liu L, et al. The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil[J]. J Clean Prod, 2020, 277: 124052.
doi: 10.1016/j.jclepro.2020.124052 URL |
[6] |
Wang GB, Zhang QQ, Du WC, et al. In-situ immobilization of cadmium-polluted upland soil: a ten-year field study[J]. Ecotoxicol Environ Saf, 2021, 207: 111275.
doi: 10.1016/j.ecoenv.2020.111275 URL |
[7] |
Gupta DK, Chatterjee S, Datta S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere, 2014, 108: 134-144.
doi: 10.1016/j.chemosphere.2014.01.030 pmid: 24560283 |
[8] |
Park JH, Bolan N, Megharaj M, et al. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils[J]. Sci Total Environ, 2011, 409(4): 853-860.
doi: 10.1016/j.scitotenv.2010.11.003 URL |
[9] |
Xiao CQ, Chi R, He H, et al. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth[J]. Appl Biochem Biotechnol, 2009, 159(2): 330-342.
doi: 10.1007/s12010-009-8590-3 pmid: 19277482 |
[10] |
Estrada-Bonilla GA, Durrer A, Cardoso EJBN. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community[J]. Appl Soil Ecol, 2021, 157: 103760.
doi: 10.1016/j.apsoil.2020.103760 URL |
[11] | Xiao C, Wang Q, Feng B, et al. Biosolubilization of rock phosphates in a bioreactor using a microbial consortium from rhizospheric soils: an analysis[J]. Miner Metall Process, 2018, 35(4): 184-191. |
[12] | 肖春桥, 池汝安. 微生物分解中低品位磷矿的研究实践[J]. 化工矿物与加工, 2015, 44(1): 47-51. |
Xiao CQ, Chi R. Research practices of microbial solubilization of mid-low grade phosphate rocks[J]. Ind Miner & Process, 2015, 44(1): 47-51. | |
[13] |
Pastore G, Kernchen S, Spohn M. Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils[J]. Soil Biol Biochem, 2020, 151: 108050.
doi: 10.1016/j.soilbio.2020.108050 URL |
[14] | 田晓娟, 杜德平, 王艳, 等. 解磷菌分离及其对内蒙古布龙图低品位磷矿利用研究[J]. 地球学报, 2007, 28(4): 377-381. |
Tian XJ, Du DP, Wang Y, et al. Isolation of phosphate solubilizing bacteria and its utilization to low grade phosphorous rocks from bulongtu area, Inner Mongolia[J]. Acta Geosci Sin, 2007, 28(4): 377-381. | |
[15] |
Ben Farhat M, Farhat A, Bejar W, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa[J]. Arch Microbiol, 2009, 191(11): 815-824.
doi: 10.1007/s00203-009-0513-8 URL |
[16] | Gupta N, Sabat J, Parida R, et al. Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines[J]. Acta Bot Croat, 2007, 66: 197-204. |
[17] |
Xiao CQ, Chi R, Huang XH, et al. Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines[J]. Ecol Eng, 2008, 33(2): 187-193.
doi: 10.1016/j.ecoleng.2008.04.001 URL |
[18] |
Xiao CQ, Zhou Y, Hu JG, et al. Biosolubilization of low-grade rock phosphate by native microbial consortia from phosphate mines: effect of sampling sources and culture media[J]. Geomicrobiol J, 2020, 37(9): 859-866.
doi: 10.1080/01490451.2020.1793033 URL |
[19] | Xiao CQ, Wu XY, Zhu L, et al. Enhanced biosolubilization of mid-low grade phosphate rock by formation of microbial consortium biofilm from activated sludge[J]. Physicochemical Problems of Mineral Processing, 2019, 55: 217-224. |
[20] | 丁淑芳, 谢正苗, 吴卫红, 等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097. |
Ding SF, Xie ZM, Wu WH, et al. Research progress on chemical remediation of heavy metal-contaminated soils using phosphorous-containing materials[J]. J Anhui Agric Sci, 2012, 40(35): 17093-17097. | |
[21] | 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. |
Zhou SW, Xu MG. The progress in phosphate remediation of heavy metal-contaminated soils[J]. Acta Ecol Sin, 2007, 27(7): 3043-3050. | |
[22] |
Henry H, Naujokas MF, Attanayake C, et al. Bioavailability-based in situ remediation to meet future lead(Pb)standards in urban soils and gardens[J]. Environ Sci Technol, 2015, 49(15): 8948-8958.
doi: 10.1021/acs.est.5b01693 URL |
[23] | Raklami A, Tahiri AI, Bechtaoui N, et al. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms[J]. J Environ Sci(China), 2021, 99: 210-221. |
[24] |
Oumani A, Mandi LL, Berrekhis F, et al. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: key parameters and mechanisms[J]. J Hazard Mater, 2019, 378: 120718.
doi: 10.1016/j.jhazmat.2019.05.111 URL |
[25] |
Mignardi S, Corami A, Ferrini V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn[J]. Chemosphere, 2012, 86(4): 354-360.
doi: 10.1016/j.chemosphere.2011.09.050 pmid: 22024096 |
[26] |
Ma QY, Logan TJ, Traina SJ. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J]. Environ Sci Technol, 1995, 29(4): 1118-1126.
doi: 10.1021/es00004a034 pmid: 22176421 |
[27] |
Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J]. J Hazard Mater, 2009, 165(1-2-3): 1109-1113.
doi: 10.1016/j.jhazmat.2008.10.103 URL |
[28] |
Hao SF, Wang PY, Ge F, et al. Enhanced Lead(Pb)immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L[J]. J Hazard Mater, 2022, 424(Pt D): 127720.
doi: 10.1016/j.jhazmat.2021.127720 URL |
[29] |
Ma LL, Chen N, Feng CP, et al. Coupling enhancement of Chromium(VI)bioreduction in groundwater by phosphorus minerals[J]. Chemosphere, 2020, 240: 124896.
doi: 10.1016/j.chemosphere.2019.124896 URL |
[30] |
Sowmya S, Rekha PD, Arun AB. Uranium(VI)bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp. YU-SS-SB-29 isolated from a high natural background radiation site[J]. Int Biodeterior Biodegrad, 2014, 94: 134-140.
doi: 10.1016/j.ibiod.2014.07.009 URL |
[31] | Rafati M, Khorasani N, Moattar F, et al. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil[J]. International Journal of Environmental Research, 2011, 5: 961-970. |
[32] | 陈明, 徐慧, 蔡忠萍, 等. 植物改良矿山废弃地的研究进展[J]. 有色金属科学与工程, 2014, 5(4): 77-82. |
Chen M, Xu H, Cai ZP, et al. Advances of phytomelioration on the reclamation soil in mining area[J]. Nonferrous Met Sci Eng, 2014, 5(4): 77-82. | |
[33] |
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant Sci, 2011, 180(2): 169-181.
doi: 10.1016/j.plantsci.2010.08.016 pmid: 21421358 |
[34] |
Shahid M, Hameed S, Tariq M, et al. Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits[J]. Ann Microbiol, 2015, 65(3): 1525-1536.
doi: 10.1007/s13213-014-0991-z URL |
[35] |
Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(Ⅵ)reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895.
doi: 10.1016/j.chemosphere.2019.124895 URL |
[36] | Jeong S, Moon HS, Shin D, et al. Survival of introduced phosphate-solubilizing bacteria(PSB)and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. J Hazard Mater, 2013, 263 Pt 2: 441-449. |
[37] |
Dharni S, Srivastava AK, Samad A, et al. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite(monoterpenes)by rose-scented Geranium(Pelargonium graveolens cv. bourbon)grown on tannery sludge amended soil[J]. Chemosphere, 2014, 117: 433-439.
doi: 10.1016/j.chemosphere.2014.08.001 pmid: 25194330 |
[38] |
Guo JK, Ding YZ, Feng RW, et al. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China[J]. Antonie Van Leeuwenhoek, 2015, 107(6): 1591-1598.
doi: 10.1007/s10482-015-0453-z URL |
[39] | 李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展[J]. 应用与环境生物学报, 2021, 27(5): 1405-1414. |
Li T, Wu MH, Yang XT, et al. Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J]. Chin J Appl Environ Biol, 2021, 27(5): 1405-1414. | |
[40] |
Guarino C, Zuzolo D, Marziano M, et al. Identification of native-metal tolerant plant species in situ: environmental implications and functional traits[J]. Sci Total Environ, 2019, 650(Pt 2): 3156-3167.
doi: 10.1016/j.scitotenv.2018.09.343 URL |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[3] | 杨宗政, 赵晓宇, 刘丹, 许文帅, 吴志国. Microbacterium sp. BD6在Cr(VI)污染农田土壤修复中的应用研究[J]. 生物技术通报, 2021, 37(10): 81-90. |
[4] | 钱婷, 叶建仁. 巨大芽孢杆菌ZS-3溶无机磷机制及其对樟树的促生作用[J]. 生物技术通报, 2020, 36(8): 45-52. |
[5] | 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. |
[6] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
[7] | 吴学玲, 周翔宇, 吴晓燕, 罗奎, 顾怡超, 周晗, 廖婉晴, 曾伟民. 四环素降解菌共培养体系构建及废水修复的群落分析[J]. 生物技术通报, 2020, 36(10): 116-126. |
[8] | 袁金玮, 陈笈, 陈芳, 刘万宏. 强化植物修复重金属污染土壤的策略及其机制[J]. 生物技术通报, 2019, 35(1): 120-130. |
[9] | 望子龙 ,罗学刚 ,司慧 ,王焯. 锰、砷对地衣芽孢杆菌铀富集的影响[J]. 生物技术通报, 2018, 34(6): 164-171. |
[10] | 张广志, 王加宁, 吴晓青, 周方园, 张新建, 赵晓燕, 谢雪迎, 周红姿. 设施番茄根围土样中木霉菌多样性及功能活性分析[J]. 生物技术通报, 2018, 34(4): 179-185. |
[11] | 华涛, 李胜男, 邸志珲, 周博, 曾文炉, 周启星, 李凤祥. 微生物降解石油污染物机制研究进展[J]. 生物技术通报, 2018, 34(10): 26-34. |
[12] | 郝大程, 周建强, 王闯, 韩君. 重金属污染土壤的植物仿生和植物修复比较研究[J]. 生物技术通报, 2017, 33(2): 66-71. |
[13] | 郝大程, 周建强, 韩君. 土壤重金属和有机污染物的微生物修复:生物强化和生物刺激[J]. 生物技术通报, 2017, 33(10): 9-17. |
[14] | 郭萍, 李红娜, 李峰, 叶婧. 石油污染微生物修复技术研究进展[J]. 生物技术通报, 2017, 33(10): 18-25. |
[15] | 冯彦媚, 范兴辉, 占卉, 滕诗雨, 阳芳, 陈少华. 甲氧基丙烯酸酯类农药生态毒理及其微生物降解研究进展[J]. 生物技术通报, 2017, 33(10): 52-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||