生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 77-91.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1150
刘晓燕(), 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军()
收稿日期:
2022-09-30
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
刘军,男,博士,教授,研究方向:动物胚胎工程;E-mail: liujun2013@nwsuaf.edu.cn作者简介:
刘晓燕,女,研究方向:动物医学;E-mail: 1710969610@nwafu.edu.cn
基金资助:
LIU Xiao-yan(), ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun()
Received:
2022-09-30
Published:
2023-05-26
Online:
2023-06-08
摘要:
乳腺生物反应器是指将外源基因导入动物基因组并在动物乳腺中特异性表达,利用动物乳腺合成、分泌蛋白的功能,在其乳汁中获得外源蛋白的技术。乳腺生物反应器凭借其高表达、低成本以及合成蛋白质的结构接近天然蛋白质等优势而被视为药用和营养蛋白生产的一次技术革新,然而由于外源基因随机整合以及重组蛋白表达不稳定等问题极大地限制了其应用。本文结合乳腺生物反应器的发展现状,从利用基因编辑技术、筛选合适的外源基因整合位点以及改进外源基因调控序列3个方面对乳腺生物反应器优化策略进行了综述,以期为提高乳腺生物反应器生产重组蛋白的表达提供理论借鉴。
刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91.
LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor[J]. Biotechnology Bulletin, 2023, 39(5): 77-91.
重组蛋白 Recombinant protein | 物种 Species | 表达含量 Expression content /(μg·mL-1) | 时间/年 Time/Year | 参考文献 References |
---|---|---|---|---|
溶菌酶Lysozym | 奶牛Bovine | 3 100 | 2016 | [ |
人乳铁蛋白Human lactoferrin | 山羊Capra hircus | 3 200 | 2015 | [ |
人血清白蛋白HSA | 奶牛Bovine | 2 500 | 2016 | [ |
抗胰蛋白酶AAT | 绵羊Ovis aries | 650 | 2000 | [ |
重组人纤溶酶原激活物 Recombinant human plasminogen activator | 兔Leporidae | 15.2-630 | 2016 | [ |
凝血因子VIII FVlll | 小鼠Mus musculus | 1 000-4 000 | 2015 | [ |
凝血因子IX FIX | 猪Sus | 100-400 | 2008 | [ |
促红细胞生成素EPO | 山羊Capra hircus | 未报道Not reported | 2002 | [ |
人C1抑制剂Human C1 inhibitor | 兔Leporidae | 未报道Not reported | 2003 | [ |
人酸性α-葡萄糖苷酶 Human acid alpha-glucosidase | 小鼠Mus musculus | 1.5 | 1996 | [ |
粒细胞巨噬细胞集落刺激因子GM-CSF | 小鼠Mus musculus | 200-4 600 | 1997 | [ |
重组人抗凝血酶Recombinant human antithrombin | 山羊Capra hircus | 未报道Not reported | 1998 | [ |
人尿激酶Human urokinase | 小鼠Mus musculus | 1 000-2 000 | 1990 | [ |
胰岛素样生长因子-1 IGF-1 | 兔Leporidae | 1 000 | 1992 | [ |
铜/锌超氧化物歧化酶、细胞外超氧化物歧化酶 CuZn-SOD、EC-SOD | 山羊Capra hircus | 100.14 ± 5.09、279.10 ± 5.38 | 2018 | [ |
卵泡刺激素FSHα、FSHβ | 山羊Capra hircus | 0.28、0.30 | 2021 | [ |
芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | 绵羊Ovis aries | 未报道Not reported | 2017 | [ |
葡糖脑苷脂酶Glucocerebrosidase | 山羊Capra hircus | 111.1 ± 8.1 | 2015 | [ |
人蛋白C Human protein C | 猪Sus | 100-1 000 | 1994 | [ |
抗程序性细胞死亡1抗体PD-1 antibody | 小鼠Mus musculus | 80.52 ± 0.82 | 2020 | [ |
丁酰胆碱酯酶Butyrylcholinesterase | 山羊Capra hircus | 1 000-5 000 | 2008 | [ |
生长激素Growth hormone | 兔Leporidae | 10 | 2012 | [ |
胶原Collagen | 小鼠Mus musculus | 200 | 2000 | [ |
抗CD20单克隆抗体Anti-CD20 mAB | 小鼠Mus musculus | 17 | 2008 | [ |
表1 乳腺生物反应器生产重组蛋白实例
Table 1 Example of recombinant protein production by mammary gland bioreactor
重组蛋白 Recombinant protein | 物种 Species | 表达含量 Expression content /(μg·mL-1) | 时间/年 Time/Year | 参考文献 References |
---|---|---|---|---|
溶菌酶Lysozym | 奶牛Bovine | 3 100 | 2016 | [ |
人乳铁蛋白Human lactoferrin | 山羊Capra hircus | 3 200 | 2015 | [ |
人血清白蛋白HSA | 奶牛Bovine | 2 500 | 2016 | [ |
抗胰蛋白酶AAT | 绵羊Ovis aries | 650 | 2000 | [ |
重组人纤溶酶原激活物 Recombinant human plasminogen activator | 兔Leporidae | 15.2-630 | 2016 | [ |
凝血因子VIII FVlll | 小鼠Mus musculus | 1 000-4 000 | 2015 | [ |
凝血因子IX FIX | 猪Sus | 100-400 | 2008 | [ |
促红细胞生成素EPO | 山羊Capra hircus | 未报道Not reported | 2002 | [ |
人C1抑制剂Human C1 inhibitor | 兔Leporidae | 未报道Not reported | 2003 | [ |
人酸性α-葡萄糖苷酶 Human acid alpha-glucosidase | 小鼠Mus musculus | 1.5 | 1996 | [ |
粒细胞巨噬细胞集落刺激因子GM-CSF | 小鼠Mus musculus | 200-4 600 | 1997 | [ |
重组人抗凝血酶Recombinant human antithrombin | 山羊Capra hircus | 未报道Not reported | 1998 | [ |
人尿激酶Human urokinase | 小鼠Mus musculus | 1 000-2 000 | 1990 | [ |
胰岛素样生长因子-1 IGF-1 | 兔Leporidae | 1 000 | 1992 | [ |
铜/锌超氧化物歧化酶、细胞外超氧化物歧化酶 CuZn-SOD、EC-SOD | 山羊Capra hircus | 100.14 ± 5.09、279.10 ± 5.38 | 2018 | [ |
卵泡刺激素FSHα、FSHβ | 山羊Capra hircus | 0.28、0.30 | 2021 | [ |
芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | 绵羊Ovis aries | 未报道Not reported | 2017 | [ |
葡糖脑苷脂酶Glucocerebrosidase | 山羊Capra hircus | 111.1 ± 8.1 | 2015 | [ |
人蛋白C Human protein C | 猪Sus | 100-1 000 | 1994 | [ |
抗程序性细胞死亡1抗体PD-1 antibody | 小鼠Mus musculus | 80.52 ± 0.82 | 2020 | [ |
丁酰胆碱酯酶Butyrylcholinesterase | 山羊Capra hircus | 1 000-5 000 | 2008 | [ |
生长激素Growth hormone | 兔Leporidae | 10 | 2012 | [ |
胶原Collagen | 小鼠Mus musculus | 200 | 2000 | [ |
抗CD20单克隆抗体Anti-CD20 mAB | 小鼠Mus musculus | 17 | 2008 | [ |
打靶位点 Target site | 物种 Species | 转基因 Transgenes | 基因编辑技术 Gene editing technology | 时间/年 Time/Year | 参考文献 Referencet |
---|---|---|---|---|---|
Rosa26 | 绵羊Ovis aries | turboGFP | CRISPR/Cas9 | 2016 | [ |
猪Sus | tdTomato | TALENs | 2014 | [ | |
牛Bovine | 自然抗性相关巨噬细胞蛋白1 NRAMP1 | CRISPR/Cas9 | 2021 | [ | |
β-casein | 牛Bovine | 人成纤维细胞生长因2 Human fibroblast growth factor 2 | CRISPR/Cas9 | 2015 | [ |
绵羊Ovis aries | 芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | CRISPR/Cas9 | 2017 | [ | |
奶牛Bovine | 溶葡球菌酶Lysostaphin | ZFNickases | 2013 | [ | |
BLG | 奶牛Bovine | 人血清白蛋白HSA | TALENs | 2016 | [ |
山羊Capra hircus | 人α-乳清蛋白Human α -whey protein | Homologous recombination | 2019 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2017 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2020 | [ | |
Col1a1 | 绵羊Ovis aries | 抗胰蛋白酶AAT | Homologous recombination | 2000 | [ |
AAVS1 | 山羊Capra hircus | 转化生长因子-β1 TGF-beta1 | TALENs | 2014 | [ |
H11 | 猪Sus | 绿色荧光蛋白GFP | CRISPR/Cas9 | 2015 | [ |
表2 常用家畜打靶位点
Table 2 Common target sites for livestock
打靶位点 Target site | 物种 Species | 转基因 Transgenes | 基因编辑技术 Gene editing technology | 时间/年 Time/Year | 参考文献 Referencet |
---|---|---|---|---|---|
Rosa26 | 绵羊Ovis aries | turboGFP | CRISPR/Cas9 | 2016 | [ |
猪Sus | tdTomato | TALENs | 2014 | [ | |
牛Bovine | 自然抗性相关巨噬细胞蛋白1 NRAMP1 | CRISPR/Cas9 | 2021 | [ | |
β-casein | 牛Bovine | 人成纤维细胞生长因2 Human fibroblast growth factor 2 | CRISPR/Cas9 | 2015 | [ |
绵羊Ovis aries | 芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | CRISPR/Cas9 | 2017 | [ | |
奶牛Bovine | 溶葡球菌酶Lysostaphin | ZFNickases | 2013 | [ | |
BLG | 奶牛Bovine | 人血清白蛋白HSA | TALENs | 2016 | [ |
山羊Capra hircus | 人α-乳清蛋白Human α -whey protein | Homologous recombination | 2019 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2017 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2020 | [ | |
Col1a1 | 绵羊Ovis aries | 抗胰蛋白酶AAT | Homologous recombination | 2000 | [ |
AAVS1 | 山羊Capra hircus | 转化生长因子-β1 TGF-beta1 | TALENs | 2014 | [ |
H11 | 猪Sus | 绿色荧光蛋白GFP | CRISPR/Cas9 | 2015 | [ |
类型 Type | 名称 Name | 转基因 Transgene | 表达系统 Expression system | 参考文献 Reference |
---|---|---|---|---|
启动子 Promoter | β-lactoglobulin promoter | 溶菌酶 Lysozyme | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
αS1-casein promoter | 抗程序性细胞死亡1抗体 PD-1 antibody | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
CMV promoter | 凝血因子Ⅷ FVlll | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
增强子 Enhancer | CMV enhancer | 人乳铁蛋白 Human lactoferrin | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
CMV enhancer | 人乳铁蛋白 Human lactoferrin | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
内含子 Intron | β-casein intron | 溶菌酶 Lysozyme | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ |
SV40 intron | 促红细胞生成素 EPO | 中国仓鼠卵巢细胞 CHO cell | [ | |
绝缘子 Insulator | β-lactoglobulin insulator | 溶菌酶 Lysozyme | 猪乳腺生物反应器 Porcine mammary gland bioreactor | [ |
cHS4 insulator | 人血清白蛋白 HSA | 牛乳腺生物反应器 Cattle mammary gland bioreactor | [ | |
tDNA insulator | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR | MAR X-29 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ |
Chicken lysozyme MAR | 免疫球蛋白 G IgG | 中国仓鼠卵巢细胞 CHO cell | [ | |
IFN-β MAR | 促红细胞生成素、肝细胞生长因子 EPO,HGF | 中国仓鼠卵巢细胞 CHO cell | [ | |
β-globin MAR | 可溶性TGF-II型受体 sTbetaRII | 中国仓鼠卵巢细胞 CHO cell | [ | |
TOP1 MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
DHFR intron MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR6 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
UCOE | UCOE | 绿色荧光蛋白 GFP | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR | STAR7 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR67 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
STAR40 | 分泌碱性磷酸酶 SEAP | 中国仓鼠卵巢细胞 CHO cell | [ |
表3 外源蛋白调控序列
Table 3 Regulatory sequences of exogenous proteins
类型 Type | 名称 Name | 转基因 Transgene | 表达系统 Expression system | 参考文献 Reference |
---|---|---|---|---|
启动子 Promoter | β-lactoglobulin promoter | 溶菌酶 Lysozyme | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
αS1-casein promoter | 抗程序性细胞死亡1抗体 PD-1 antibody | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
CMV promoter | 凝血因子Ⅷ FVlll | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
增强子 Enhancer | CMV enhancer | 人乳铁蛋白 Human lactoferrin | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
CMV enhancer | 人乳铁蛋白 Human lactoferrin | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
内含子 Intron | β-casein intron | 溶菌酶 Lysozyme | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ |
SV40 intron | 促红细胞生成素 EPO | 中国仓鼠卵巢细胞 CHO cell | [ | |
绝缘子 Insulator | β-lactoglobulin insulator | 溶菌酶 Lysozyme | 猪乳腺生物反应器 Porcine mammary gland bioreactor | [ |
cHS4 insulator | 人血清白蛋白 HSA | 牛乳腺生物反应器 Cattle mammary gland bioreactor | [ | |
tDNA insulator | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR | MAR X-29 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ |
Chicken lysozyme MAR | 免疫球蛋白 G IgG | 中国仓鼠卵巢细胞 CHO cell | [ | |
IFN-β MAR | 促红细胞生成素、肝细胞生长因子 EPO,HGF | 中国仓鼠卵巢细胞 CHO cell | [ | |
β-globin MAR | 可溶性TGF-II型受体 sTbetaRII | 中国仓鼠卵巢细胞 CHO cell | [ | |
TOP1 MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
DHFR intron MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR6 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
UCOE | UCOE | 绿色荧光蛋白 GFP | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR | STAR7 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR67 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
STAR40 | 分泌碱性磷酸酶 SEAP | 中国仓鼠卵巢细胞 CHO cell | [ |
[3] |
Qian X, Zhao FQ. Current major advances in the regulation of milk protein gene expression[J]. Crit Rev Eukaryot Gene Expr, 2014, 24(4): 357-378.
doi: 10.1615/CritRevEukaryotGeneExpr.v24.i4 URL |
[4] |
Clark AJ. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins[J]. J Mammary Gland Biol Neoplasia, 1998, 3(3): 337-350.
doi: 10.1023/A:1018723712996 URL |
[5] |
Lu D, Liu S, Ding FR, et al. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows[J]. Sci Rep, 2016, 6: 22947.
doi: 10.1038/srep22947 pmid: 26961596 |
[6] |
Cui CC, Song YJ, Liu J, et al. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk[J]. Sci Rep, 2015, 5: 10482.
doi: 10.1038/srep10482 pmid: 25994151 |
[7] |
Luo Y, Wang YS, Liu J, et al. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands[J]. Sci Rep, 2016, 6: 20657.
doi: 10.1038/srep20657 pmid: 26853907 |
[8] |
McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature, 2000, 405(6790): 1066-1069.
doi: 10.1038/35016604 |
[9] |
Song SZ, Ge X, Cheng YB, et al. High-level expression of a novel recombinant human plasminogen activator(rhPA)in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro[J]. Mol Biol Rep, 2016, 43(8): 775-783.
doi: 10.1007/s11033-016-4020-0 URL |
[10] |
Wang Q, Hao S, Ma L, et al. Comparison of human coagulation factor VIII expression directed by Cytomegalovirus and mammary gland-specific promoters in HC11 cells and transgenic mice[J]. Blood Coagul Fibrinolysis, 2015, 26(7): 755-761.
doi: 10.1097/MBC.0000000000000318 URL |
[11] |
Gil GC, Velander WH, van Cott KE. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk[J]. Glycobiology, 2008, 18(7): 526-539.
doi: 10.1093/glycob/cwn035 URL |
[12] | 成勇, 王玉阁, 罗金平. 由成年转基因山羊体细胞而来的克隆山羊[J]. 生物工程学报, 2002, 18(1): 79-83. |
Cheng Y, Wang YG, Luo JP, et al. Cloned goats produced from the somatic cells of an adult transgenic goat[J]. Chinese Journal of Biotechnology, 2002, 18(1): 79-83.
pmid: 11977606 |
|
[13] |
Koles K, Pieper FR, et al. N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits[J]. Glycobiology, 2004, 14(1): 51-64.
pmid: 14514717 |
[14] |
Bijvoet AG, Kroos MA, Pieper FR, et al. Expression of cDNA-encoded human acid alpha-glucosidase in milk of transgenic mice[J]. Biochim Biophys Acta, 1996, 1308(2): 93-96.
pmid: 8764823 |
[15] |
Uusi-Oukari M, Hyttinen JM, Korhonen VP, et al. Bovine alpha s1-casein gene sequences direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice[J]. Transgenic Res, 1997, 6(1): 75-84.
pmid: 9032980 |
[16] |
Edmunds T, van Patten SM, Pollock J, et al. Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin[J]. Blood, 1998, 91(12): 4561-4571.
pmid: 9616152 |
[17] |
Meade H, Gates L, Lacy E, et al. Bovine AlphaS1-casein gene sequences direct high level expression of active human urokinase in mouse milk[J]. Nature Biotechnology, 1990, 8(5): 443-446.
pmid: 1369989 |
[18] |
Brem G, Hartl P, Besenfelder U, et al. Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1(IGF-1)in the mammary gland of transgenic rabbits[J]. Gene, 1994, 149(2): 351-355.
pmid: 7959016 |
[19] |
Lu R, Zhang T, Wu DJ, et al. Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk[J]. Transgenic Res, 2018, 27(4): 343-354.
doi: 10.1007/s11248-018-0080-3 pmid: 29926349 |
[20] |
Hua RM, Liu JX, Li Y, et al. Novel functional recombinant human follicle-stimulating hormone acquired from goat milk[J]. J Agric Food Chem, 2021, 69(9): 2793-2804.
doi: 10.1021/acs.jafc.0c07208 URL |
[21] | Ma T, Tao J, Yang M, et al. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J]. J Pineal Res, 2017, 63(1): 2017 Aug; 63(1). |
[22] |
Tavares KC, Dias AC, Lazzarotto CR, et al. Transient expression of functional glucocerebrosidase for treatment of Gaucher’s disease in the goat mammary gland[J]. Mol Biotechnol, 2016, 58(1): 47-55.
doi: 10.1007/s12033-015-9902-1 URL |
[23] |
Morcöl T, Akers RM, Johnson JL, et al. The porcine mammary gland as a bioreactor for complex proteins[J]. Ann N Y Acad Sci, 1994, 721: 218-233.
doi: 10.1111/nyas.1994.721.issue-1 URL |
[24] |
Gong GH, Zhang W, Xie LP, et al. Expression of a recombinant anti-programed cell death 1 antibody in the mammary gland of transgenic mice[J]. Prep Biochem Biotechnol, 2021, 51(2): 183-190.
doi: 10.1080/10826068.2020.1805755 URL |
[25] |
Baldassarre H, Hockley DK, Olaniyan B, et al. Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland[J]. Transgenic Res, 2008, 17(5): 863-872.
doi: 10.1007/s11248-008-9184-5 pmid: 18483775 |
[26] |
Lipinski D, Zeyland J, Szalata M, et al. Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q[J]. J Appl Genet, 2012, 53(4): 435-442.
doi: 10.1007/s13353-012-0110-4 pmid: 22898896 |
[27] |
Bulleid NJ, John DC, Kadler KE. Recombinant expression systems for the production of collagen[J]. Biochem Soc Trans, 2000, 28(4): 350-353.
doi: 10.1042/bst0280350 URL |
[28] |
Tang B, Yu SS, Zheng M, et al. High level expression of a functional human/mouse chimeric anti-CD20 monoclonal antibody in milk of transgenic mice[J]. Transgenic Res, 2008, 17(4): 727-732.
doi: 10.1007/s11248-007-9162-3 pmid: 18183493 |
[29] |
Yu HQ, Wang XB, Zhu L, et al. Establishment of a rapid and scalable gene expression system in livestock by site-specific integration[J]. Gene, 2013, 515(2): 367-371.
doi: 10.1016/j.gene.2012.10.017 pmid: 23089494 |
[30] |
Ahmadi M, Damavandi N, Akbari Eidgahi MR, et al. Utilization of site-specific recombination in biopharmaceutical production[J]. Iran Biomed J, 2016, 20(2): 68-76.
pmid: 26602035 |
[31] |
Jensen KT, Fløe L, Petersen TS, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency[J]. FEBS Lett, 2017, 591(13): 1892-1901.
doi: 10.1002/1873-3468.12707 pmid: 28580607 |
[32] |
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells[J]. Biotechnol Bioeng, 2003, 81(6): 631-639.
pmid: 12529877 |
[33] |
Houdebine LM. Production of pharmaceutical proteins by transgenic animals[J]. Comp Immunol Microbiol Infect Dis, 2009, 32(2): 107-121.
doi: 10.1016/j.cimid.2007.11.005 URL |
[34] |
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems[J]. Appl Microbiol Biotechnol, 2020, 104(13): 5673-5688.
doi: 10.1007/s00253-020-10640-w |
[35] |
Shepelev MV, Kalinichenko SV, Deykin AV, et al. Production of recombinant proteins in the milk of transgenic animals: current state and prospects[J]. Acta Naturae, 2018, 10(3): 40-47.
pmid: 30397525 |
[36] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548 |
[37] |
Pavani G, Amendola M. Targeted gene delivery: where to land[J]. Front Genome Ed, 2021, 2: 609650.
doi: 10.3389/fgeed.2020.609650 URL |
[38] |
Kumar S, Clarke AR, Hooper ML, et al. Milk composition and lactation of beta-casein-deficient mice[J]. PNAS, 1994, 91(13): 6138-6142.
pmid: 8016126 |
[39] | 宋绍征, 张婷, 潘生强, 等. CRISPR/Cas9系统介导的人乳铁蛋白基因在山羊β-乳球蛋白基因座定点敲入[J]. 中国农业大学学报, 2020, 25(7): 111-119. |
Song SZ, Zhang T, Pan SQ, et al. hLF gene knock-in at the BLGlocus of goat by CRISPR/Cas9 system[J]. J China Agric Univ, 2020, 25(7): 111-119. | |
[40] | 冀艳华, 徐乔璐, 刘军, 等. TALEN介导猪瘟病毒结构蛋白基因E0敲入山羊乳腺上皮细胞β-乳球蛋白基因座[J]. 中国兽医学报, 2017, 37(7): 1206-1211. |
Ji YH, Xu QL, Liu J, et al. CSFV E0 gene knocked-in β-lactoglobulin locus in goat mammary epithelial cells by TALEN[J]. Chin J Vet Sci, 2017, 37(7): 1206-1211. | |
[41] |
An LY, Yang L, Huang YJ, et al. Generating goat mammary gland bioreactors for producing recombinant proteins by gene targeting[J]. Methods Mol Biol, 2019, 1874: 391-401.
doi: 10.1007/978-1-4939-8831-0_23 pmid: 30353527 |
[42] |
Wu MM, Wei CH, Lian ZX, et al. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Sci Rep, 2016, 6: 24360.
doi: 10.1038/srep24360 pmid: 27063570 |
[43] |
Li XP, Yang Y, Bu L, et al. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J]. Cell Res, 2014, 24(4): 501-504.
doi: 10.1038/cr.2014.15 pmid: 24503648 |
[44] |
Yuan MK, Zhang JC, Gao YP, et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis[J]. J Biol Chem, 2021, 296: 100497.
doi: 10.1016/j.jbc.2021.100497 URL |
[45] |
Jeong YH, Kim YJ, Kim EY, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination[J]. Zygote, 2016, 24(3): 442-456.
doi: 10.1017/S0967199415000374 URL |
[46] |
Liu X, Wang YS, Guo WJ, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013, 4: 2565.
doi: 10.1038/ncomms3565 pmid: 24121612 |
[47] | 周文君, 郭日红, 邓明田, 等. RS-1提高CRISPR-Cas9系统介导的人乳铁蛋白基因敲入效率[J]. 生物工程学报, 2017, 33(8): 1224-1234. |
Zhou WJ, Guo RH, Deng MT, et al. RS-1 enhanced the efficiency of CRISPR-Cas9 mediated knock-in of human lactoferrin[J]. Chin J Biotechnol, 2017, 33(8): 1224-1234. | |
[48] | Hu SW, Hall J, Wang Z, et al. TALEN-mediated targeted insertion of transforming growth factor-beta 1(TGF-beta 1)gene into the goat AAVS1 locus[J]. Transgenic Research, 2014, 23(1): 203-204. |
[49] |
Ruan JX, Li HG, Xu K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Sci Rep, 2015, 5: 14253.
doi: 10.1038/srep14253 pmid: 26381350 |
[50] |
Brady JR, Tan MC, Whittaker CA, et al. Identifying improved sites for heterologous gene integration using ATAC-seq[J]. ACS Synth Biol, 2020, 9(9): 2515-2524.
doi: 10.1021/acssynbio.0c00299 pmid: 32786350 |
[51] |
Iler N, Goodwin AJ, McInerney J, et al. Targeted remodeling of human beta-globin promoter chromatin structure produces increased expression and decreased silencing[J]. Blood Cells Mol Dis, 1999, 25(1): 47-60.
doi: 10.1006/bcmd.1999.0226 URL |
[52] |
Nemeth MJ, Bodine DM, Garrett LJ, et al. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression[J]. Blood Cells Mol Dis, 2001, 27(4): 767-780.
doi: 10.1006/bcmd.2001.0448 URL |
[53] |
Eyquem J, Poirot L, Galetto R, et al. Characterization of three loci for homologous gene targeting and transgene expression[J]. Biotechnol Bioeng, 2013, 110(8): 2225-2235.
doi: 10.1002/bit.24892 pmid: 23475535 |
[54] |
Yan CH, Boyd DD. Histone H 3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression[J]. Mol Cell Biol, 2006, 26(17): 6357-6371.
doi: 10.1128/MCB.00311-06 URL |
[55] |
Veith N, Ziehr H, MacLeod RAF, et al. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary(CHO)cell lines[J]. BMC Biotechnol, 2016, 16: 6.
doi: 10.1186/s12896-016-0238-0 URL |
[56] |
Singh K, Erdman RA, Swanson KM, et al. Epigenetic regulation of milk production in dairy cows[J]. J Mammary Gland Biol Neoplasia, 2010, 15(1): 101-112.
doi: 10.1007/s10911-010-9164-2 URL |
[57] |
Clapier CR, Iwasa J, Cairns BR, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 407-422.
doi: 10.1038/nrm.2017.26 URL |
[58] |
Zhao YX, Hou Y, Xu YY, et al. A compendium and comparative epigenomics analysis of Cis-regulatory elements in the pig genome[J]. Nat Commun, 2021, 12(1): 2217.
doi: 10.1038/s41467-021-22448-x |
[1] |
O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing[J]. Biotechnol Adv, 2020, 43: 107552.
doi: 10.1016/j.biotechadv.2020.107552 URL |
[2] | Wang YL, Zhao SH, Bai L, et al. Expression systems and species used for transgenic animal bioreactors[J]. Biomed Res Int, 2013, 2013: 580463. |
[59] |
Reilly SK, Yin J, Ayoub AE, et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis[J]. Science, 2015, 347(6226): 1155-1159.
doi: 10.1126/science.1260943 pmid: 25745175 |
[60] |
Chen KF, Chen Z, Wu DY, et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes[J]. Nat Genet, 2015, 47(10): 1149-1157.
doi: 10.1038/ng.3385 pmid: 26301496 |
[61] |
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nat Biotechnol, 2021, 39(7): 825-835.
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[62] |
Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions[J]. Nat Rev Genet, 2014, 15(4): 272-286.
doi: 10.1038/nrg3682 pmid: 24614317 |
[63] |
Rijnkels M, Freeman-Zadrowski C, Hernandez J, et al. Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation[J]. PLoS One, 2013, 8(1): e53270.
doi: 10.1371/journal.pone.0053270 URL |
[64] |
Singh K, Molenaar AJ, Swanson KM, et al. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production[J]. Animal, 2012, 6(3): 375-381.
doi: 10.1017/S1751731111002564 pmid: 22436216 |
[65] |
Zhang XY, Zhang SH, Ma L, et al. Reduced representation bisulfite sequencing(RRBS)of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes[J]. Oncotarget, 2017, 8(70): 115326-115344.
doi: 10.18632/oncotarget.v8i70 URL |
[66] |
Yan F, Powell DR, Curtis DJ, et al. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis[J]. Genome Biol, 2020, 21(1): 22.
doi: 10.1186/s13059-020-1929-3 pmid: 32014034 |
[67] |
Papapetrou EP, Schambach A. Gene insertion into genomic safe harbors for human gene therapy[J]. Mol Ther, 2016, 24(4): 678-684.
doi: 10.1038/mt.2016.38 pmid: 26867951 |
[68] |
Sadelain M, Papapetrou EP, Bushman FD. Safe harbours for the integration of new DNA in the human genome[J]. Nat Rev Cancer, 2011, 12(1): 51-58.
doi: 10.1038/nrc3179 pmid: 22129804 |
[69] |
Pellenz S, Phelps M, Tang WL, et al. New human chromosomal sites with “safe harbor” potential for targeted transgene insertion[J]. Hum Gene Ther, 2019, 30(7): 814-828.
doi: 10.1089/hum.2018.169 pmid: 30793977 |
[70] |
Beagan JA, Phillips-Cremins JE. On the existence and functionality of topologically associating domains[J]. Nat Genet, 2020, 52(1): 8-16.
doi: 10.1038/s41588-019-0561-1 pmid: 31925403 |
[71] |
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis[J]. Biotechnol Bioeng, 2021, 118(2): 659-675.
doi: 10.1002/bit.27599 pmid: 33049068 |
[72] |
Meuleman W, Muratov A, Rynes E, et al. Index and biological spectrum of human DNase I hypersensitive sites[J]. Nature, 2020, 584(7820): 244-251.
doi: 10.1038/s41586-020-2559-3 |
[73] |
Autio MI, Motakis E, Perrin A, et al. Computationally defined and in vitro validated putative genomic safe harbour loci for transgene expression in human cells[J]. bioRxiv, 2022, DOI:10.1101/2021.12.07.471422.
doi: 10.1101/2021.12.07.471422 |
[74] |
Bhagwan JR, Collins E, Mosqueira D, et al. Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour[J]. F1000Research, 2019, 8: 1911.
doi: 10.12688/f1000research.19894.2 pmid: 32789000 |
[75] |
Yu HQ, Chen JQ, Liu SG, et al. Large-scale production of functional human lysozyme in transgenic cloned goats[J]. J Biotechnol, 2013, 168(4): 676-683.
pmid: 24432381 |
[76] |
Zhang T, Yuan YG, Lu R, et al. The goat β-casein/CMV chimeric promoter drives the expression of hLF in transgenic goats produced by cell transgene microinjection[J]. Int J Mol Med, 2019, 44(6): 2057-2064.
doi: 10.3892/ijmm.2019.4382 pmid: 31661123 |
[77] |
Cheng Y, An LY, Yuan YG, et al. Hybrid expression cassettes consisting of a milk protein promoter and a cytomegalovirus enhancer significantly increase mammary-specific expression of human lactoferrin in transgenic mice[J]. Mol Reprod Dev, 2012, 79(8): 573-585.
doi: 10.1002/mrd.22063 pmid: 22730016 |
[78] |
Li GC, Shi WQ, Chen G, et al. Construction and in vivo evaluation of a mammary gland-specific expression vector for human lysozyme[J]. Plasmid, 2014, 76: 47-53.
doi: 10.1016/j.plasmid.2014.09.004 pmid: 25280784 |
[79] |
Xu DH, Wang XY, Jia YL, et al. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells[J]. J Cell Mol Med, 2018, 22(4): 2231-2239.
doi: 10.1111/jcmm.2018.22.issue-4 URL |
[80] |
Lu D, Li QY, Wu ZB, et al. High-level recombinant human lysozyme expressed in milk of transgenic pigs can inhibit the growth of Escherichia coli in the duodenum and influence intestinal morphology of sucking pigs[J]. PLoS One, 2014, 9(2): e89130.
doi: 10.1371/journal.pone.0089130 URL |
[81] |
Luo Y, Liu J, Liu QQ, et al. Chicken hypersensitive site-4 insulator increases human serum albumin expression in bovine mammary epithelial cells modified with phiC31 integrase[J]. Biotechnol Lett, 2013, 35(4): 529-537.
doi: 10.1007/s10529-012-1125-y pmid: 23264267 |
[82] |
Naderi F, Hashemi M, Bayat H, et al. The augmenting effects of the tDNA insulator on stable expression of monoclonal antibody in Chinese hamster ovary cells[J]. Monoclon Antib Immunodiagn Immunother, 2018, 37(5): 200-206.
doi: 10.1089/mab.2018.0015 pmid: 30362930 |
[83] |
Zhang JH, Zhang JH, Wang XY, et al. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells[J]. Biotechnol Lett, 2020, 42(2): 187-196.
doi: 10.1007/s10529-019-02775-2 |
[84] |
Girod PA, Zahn-Zabal M, Mermod N. Use of the chicken lysozyme 5' matrix attachment region to generate high producer CHO cell lines[J]. Biotechnol Bioeng, 2005, 91(1): 1-11.
doi: 10.1002/(ISSN)1097-0290 URL |
[85] |
Kim JD, Yoon Y, Hwang HY, et al. Efficient selection of stable Chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element[J]. Biotechnol Prog, 2005, 21(3): 933-937.
doi: 10.1021/(ISSN)1520-6033 URL |
[86] |
Kim JM, Kim JS, Park DH, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions[J]. J Biotechnol, 2004, 107(2): 95-105.
doi: 10.1016/j.jbiotec.2003.09.015 URL |
[87] |
Jia YL, Guo X, Wang XC, et al. Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells[J]. Biotechnol Lett, 2019, 41(6/7): 701-709.
doi: 10.1007/s10529-019-02673-7 |
[88] | Tian ZW, Xu DH, Wang TY, et al. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells[J]. J Cell Mol Med, 2018, 22(2): 1095-1102. |
[89] |
Benton T, Chen T, McEntee M, et al. The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein[J]. Cytotechnology, 2002, 38(1-3): 43-46.
doi: 10.1023/A:1021141712344 pmid: 19003085 |
[90] |
Saunders F, Sweeney B, Antoniou MN, et al. Chromatin function modifying elements in an industrial antibody production platform—comparison of UCOE, MAR, STAR and cHS4 elements[J]. PLoS One, 2015, 10(4): e0120096.
doi: 10.1371/journal.pone.0120096 URL |
[91] |
Kwaks THJ, Barnett P, Hemrika W, et al. Identification of anti-repressor elements that confer high and stable protein production in mammalian cells[J]. Nat Biotechnol, 2003, 21(5): 553-558.
pmid: 12679786 |
[92] |
Maksimenko OG, Deykin AV, Khodarovich YM, et al. Use of transgenic animals in biotechnology: prospects and problems[J]. Acta Naturae, 2013, 5(1): 33-46.
pmid: 23556129 |
[93] |
Li S, Huang SH, Qiao SY, et al. Cloning and functional characterization of STAT5a and STAT5b genes in buffalo mammary epithelial cells[J]. Anim Biotechnol, 2020, 31(1): 59-66.
doi: 10.1080/10495398.2018.1538014 pmid: 30431388 |
[94] |
Qian X, Zhao FQ. Regulatory roles of Oct proteins in the mammary gland[J]. Biochim Biophys Acta, 2016, 1859(6): 812-819.
doi: 10.1016/j.bbagrm.2016.03.015 pmid: 27044595 |
[95] |
Song N, Luo J, Huang L, et al. Mutation of signal transducer and activator of transcription 5 (STAT5) binding sites decreases milk allergen αS1-casein content in goat mammary epithelial cells[J]. Foods, 2022, 11(3): 346.
doi: 10.3390/foods11030346 URL |
[96] |
Kung MH, Lee YJ, Hsu JT, et al. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells[J]. J Dairy Sci, 2015, 98(6): 3859-3875.
doi: 10.3168/jds.2014-9054 pmid: 25841968 |
[97] |
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown[J]. Genome Biol, 2021, 22(1): 108.
doi: 10.1186/s13059-021-02322-1 pmid: 33858480 |
[98] |
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication[J]. Curr Opin Cell Biol, 2022, 75: 102065.
doi: 10.1016/j.ceb.2022.01.010 URL |
[99] |
Osterwalder M, Barozzi I, Tissières V, et al. Enhancer redundancy provides phenotypic robustness in mammalian development[J]. Nature, 2018, 554(7691): 239-243.
doi: 10.1038/nature25461 URL |
[100] | Song W, Sharan R, Ovcharenko I. The first enhancer in an enhancer chain safeguards subsequent enhancer-promoter contacts. |
[101] |
Shin HY, Willi M, HyunYoo K, et al. Hierarchy within the mammary STAT5-driven wap super-enhancer[J]. Nat Genet, 2016, 48(8): 904-911.
doi: 10.1038/ng.3606 pmid: 27376239 |
[102] |
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155(4): 934-947.
doi: 10.1016/j.cell.2013.09.053 pmid: 24119843 |
[103] |
Lee Z, Raabe M, Hu WS. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells[J]. Biotechnol Bioeng, 2021, 118(5): 1851-1861.
doi: 10.1002/bit.27701 pmid: 33521928 |
[104] |
Zeng XK, Lee HK, Wang CC, et al. The interdependence of mammary-specific super-enhancers and their native promoters facilitates gene activation during pregnancy[J]. Exp Mol Med, 2020, 52(4): 682-690.
doi: 10.1038/s12276-020-0425-x pmid: 32321991 |
[105] |
Borsari B, Villegas-Mirón P, Pérez-Lluch S, et al. Enhancers with tissue-specific activity are enriched in intronic regions[J]. Genome Res, 2021, 31(8): 1325-1336.
doi: 10.1101/gr.270371.120 pmid: 34290042 |
[106] |
Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nat Rev Genet, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096 |
[107] |
Corrales M, Rosado A, Cortini R, et al. Clustering of Drosophila housekeeping promoters facilitates their expression[J]. Genome Res, 2017, 27(7): 1153-1161.
doi: 10.1101/gr.211433.116 pmid: 28420691 |
[108] |
Zhu I, Song W, Ovcharenko I, et al. A model of active transcription hubs that unifies the roles of active promoters and enhancers[J]. Nucleic Acids Res, 2021, 49(8): 4493-4505.
doi: 10.1093/nar/gkab235 URL |
[109] | Dong WH, Li CP, Yang Y, et al. Increasing transgenic expression in recombinant Chinese hamster ovary cells using introns in different directions[J]. Sheng Wu Gong Cheng Xue Bao, 2019, 35(6): 1071-1078. |
[110] |
Chorev M, Carmel L. The function of introns[J]. Front Genet, 2012, 3: 55.
doi: 10.3389/fgene.2012.00055 pmid: 22518112 |
[111] |
Bieberstein NI, Carrillo Oesterreich F, Straube K, et al. First exon length controls active chromatin signatures and transcription[J]. Cell Rep, 2012, 2(1): 62-68.
doi: 10.1016/j.celrep.2012.05.019 pmid: 22840397 |
[112] |
Agarwal N, Ansari A. Enhancement of transcription by a splicing-competent intron is dependent on promoter directionality[J]. PLoS Genet, 2016, 12(5): e1006047.
doi: 10.1371/journal.pgen.1006047 URL |
[113] |
Palazzo AF, Mahadevan K, Tarnawsky SP. ALREX-elements and introns: two identity elements that promote mRNA nuclear export[J]. Wiley Interdiscip Rev RNA, 2013, 4(5): 523-533.
doi: 10.1002/wrna.2013.4.issue-5 URL |
[114] |
Shaul O. How introns enhance gene expression[J]. Int J Biochem Cell Biol, 2017, 91(Pt B): 145-155.
doi: S1357-2725(17)30154-1 pmid: 28673892 |
[115] | Houdebine LM. Design of vectors for optimizing transgene expression[M]// Transgenic Animal Technology. Amsterdam: Elsevier, 2014: 489-511. |
[116] |
Qu GS, Piazza CL, Smith D, et al. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting[J]. eLife, 2018, 7: e34268.
doi: 10.7554/eLife.34268 URL |
[117] |
Rose AB. Introns as gene regulators: a brick on the accelerator[J]. Front Genet, 2019, 9: 672.
doi: 10.3389/fgene.2018.00672 |
[118] |
Gallegos JE, Rose AB. The enduring mystery of intron-mediated enhancement[J]. Plant Sci, 2015, 237: 8-15.
doi: 10.1016/j.plantsci.2015.04.017 pmid: 26089147 |
[119] |
Dwyer K, Agarwal N, Gega A, et al. Proximity to the promoter and Terminator regions regulates the transcription enhancement potential of an intron[J]. Front Mol Biosci, 2021, 8: 712639.
doi: 10.3389/fmolb.2021.712639 URL |
[120] | Romanova N, Noll T. Engineered and natural promoters and chromatin-modifying elements for recombinant protein expression in CHO cells[J]. Biotechnol J, 2018, 13(3): e1700232. |
[121] |
Reddi PP, Urekar CJ, Abhyankar MM, et al. Role of an insulator in testis-specific gene transcription[J]. Ann N Y Acad Sci, 2007, 1120: 95-103.
doi: 10.1196/annals.1411.012 URL |
[122] |
Chetverina D, Aoki T, Erokhin M, et al. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks[J]. Bioessays, 2014, 36(2): 163-172.
doi: 10.1002/bies.201300125 pmid: 24277632 |
[123] |
Lu XB, Guo YH, Huang W. Characterization of the cHS4 insulator in mouse embryonic stem cells[J]. FEBS Open Bio, 2020, 10(4): 644-656.
doi: 10.1002/feb4.v10.4 URL |
[124] |
Kisseljova NP, Dmitriev P, Katargin A, et al. DNA polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix attachment region to the nuclear matrix[J]. Eur J Hum Genet, 2014, 22(9): 1117-1123.
doi: 10.1038/ejhg.2013.306 pmid: 24448543 |
[125] |
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems[J]. Crit Rev Biotechnol, 2020, 40(7): 1035-1043.
doi: 10.1080/07388551.2020.1805401 pmid: 32777953 |
[126] |
Harraghy N, Calabrese D, Fisch I, et al. Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells[J]. Biotechnol J, 2015, 10(7): 967-978.
doi: 10.1002/biot.201400649 pmid: 26099730 |
[127] |
Zhao CP, Guo X, Chen SJ, et al. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells[J]. Sci Rep, 2017, 7: 42805.
doi: 10.1038/srep42805 |
[128] |
Nematpour F, Mahboudi F, Vaziri B, et al. Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells[J]. BMC Biotechnol, 2017, 17(1): 18.
doi: 10.1186/s12896-017-0330-0 pmid: 28228095 |
[129] |
Rocha-Pizaña MDR, Ascencio-Favela G, Soto-García BM, et al. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells[J]. Protein Expr Purif, 2017, 132: 108-115.
doi: 10.1016/j.pep.2017.01.014 URL |
[130] |
Wang B, Guo Q, Liu LY, et al. Effect of interactions of chromatin regulatory elements with different promoters on the regulation of gene expression[J]. Chinese journal of biotechnology, 2021, 37(9): 3310-3322.
doi: 10.13345/j.cjb.200748 pmid: 34622638 |
[131] |
Mayr C. What are 3' UTRs doing?[J]. Cold Spring Harb Perspect Biol, 2019, 11(10): a034728.
doi: 10.1101/cshperspect.a034728 URL |
[132] |
Kim JJ, Yu J, Bag J, et al. Translation attenuation via 3' terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk[J]. RNA Biol, 2015, 12(3): 354-367.
doi: 10.1080/15476286.2015.1017231 URL |
[133] |
Goodarzi H, Najafabadi HS, Oikonomou P, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs[J]. Nature, 2012, 485(7397): 264-268.
doi: 10.1038/nature11013 |
[134] |
Cohen-Zontag O, Baez C, Lim LQJ, et al. A secretion-enhancing cis regulatory targeting element(SECReTE)involved in mRNA localization and protein synthesis[J]. PLoS Genet, 2019, 15(7): e1008248.
doi: 10.1371/journal.pgen.1008248 URL |
[135] |
He Z, Song D, van Zalen S, et al. Structural determinants of human ζ-globin mRNA stability[J]. J Hematol Oncol, 2014, 7: 35.
doi: 10.1186/1756-8722-7-35 |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[4] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[5] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[6] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[7] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[8] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[9] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[10] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[11] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
[12] | 燕炯, 冯晨毅, 高学坤, 许祥, 杨佳敏, 陈朝阳. 基于CRISPR/Cas9技术构建Plin1基因敲除小鼠模型及表型分析[J]. 生物技术通报, 2022, 38(3): 173-180. |
[13] | 钟菁, 孙玲玲, 张姝, 蒙园, 支怡飞, 涂黎晴, 徐天鹏, 濮黎萍, 陆阳清. 应用CRISPR/Cas9技术敲除Mda5基因对新城疫及传染性法氏囊病毒复制的影响[J]. 生物技术通报, 2022, 38(11): 90-96. |
[14] | 宗梅, 韩硕, 郭宁, 段蒙蒙, 刘凡, 王桂香. 利用真空渗透和CRISPR/Cas9系统获得非转基因菜薹突变体[J]. 生物技术通报, 2022, 38(10): 159-163. |
[15] | 王海杰, 王成稷, 郭洋, 王云, 陈艳娟, 梁敏, 王珏, 龚慧, 沈如凌. 基于CRSIPR/Cas9技术构建凝血因子8基因敲除小鼠模型及表型验证[J]. 生物技术通报, 2022, 38(10): 273-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||