生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 49-60.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1331
徐汝悦(), 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚(), 张文超()
收稿日期:
2022-10-28
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
张文超,女,博士,讲师,研究方向:环境微生物资源开发;E-mail: wenchaozhang@usts.edu.cn;作者简介:
徐汝悦,女,硕士研究生,研究方向:微生物修复重金属污染;E-mail: 1261006421@qq.com
基金资助:
XV Ru-yue(), WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei(), ZHANG Wen-chao()
Received:
2022-10-28
Published:
2023-06-26
Online:
2023-07-07
摘要:
铬是一种主要的无机污染物,通过岩石风化、火山喷发等自然过程和冶金、化工、皮革产业等人为活动释放到土壤和水体中。铬主要以两种不同的稳定氧化状态存在:Cr(III)和Cr(VI),其中Cr(VI)的毒性大、流动性强、生态风险性大,是目前世界公认的I类致癌物。因此,Cr(VI)污染的治理研究受到了广泛的关注。传统的物理化学修复技术存在执行成本高、效率低、容易产生有毒副产物和无法大规模实施等缺点;生物修复技术改善了传统修复技术的局限性,是一种更经济、更环保、可持续的绿色修复技术。本文综述了Cr(VI)的污染来源、毒性特点,详细阐述了其微生物修复和植物修复的过程及机制,并展望了生物修复铬污染的未来发展方向,以期为生物修复Cr(VI)污染的应用提供理论指导和科学依据。
徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60.
XV Ru-yue, WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei, ZHANG Wen-chao. Research Progress in Bioremediation of Cr(VI)[J]. Biotechnology Bulletin, 2023, 39(6): 49-60.
分类 Classification | 名称 Name of organism | 生物量 Biomass | pH | 温度 Temperature/℃ | 初始Cr(VI)浓度Initial Cr(VI)concentration/(mg·L-1) | 去除效率Removal efficiency/% | 去除机理 Removal mechanism | 时间 Time | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
细菌 Bacteria | Bacillus amyloliquefaciens | 0.3 g/100 mL | 7 | 37 | 500 | 82.1 | 生物吸附 Biosorption | 60 min | [ |
Bacillus sp. CRB-B1 | 2%(V/V) | 7 | 37 | 100 | 68.5 | 生物还原 Bioreduction | 36 h | [ | |
Bacillus cereus b-525k | - | 8 | 37 | - | 99.0 | 生物还原 Bioreduction | 6 d | [ | |
Stenotrophomonas acidaminiphila 4-1 | 10% (V/V) | 7.2 | 30 | 15 | 75.7 | 生物积累 Bioaccumulation 生物还原 Bioreduction | 7 d | [ | |
Bacillus strain T124 | - | 7 | 37 | 100 | 61.8 | 生物还原 Bioreduction 生物矿化 Biomineralization | 48 h | [ | |
真菌 Fungi | Aspergillus tubingensis AF3 | 5%(V/V) | 7 | 25 | 1 000 | 74.5 | 生物吸附 Biosorption | 12 d | [ |
Aspergillus niger | 1%(V/V) | 30 | 10-50 | ~100 | 生物还原 Bioreduction 生物积累 Bioaccumulation | 12 d | [ | ||
Penicillium chrysogenum CS1 | - | - | 27 | 50 | 65.2 | 生物矿化Biomineralization | 12 d | [ | |
微藻 Microalgae | Chlorella sorokiniana | - | 7 | 25 | 100 | 99.7 | 生物吸附 Biosorption | 7 d | [ |
表1 不同微生物对Cr(VI)的去除效率及机理
Table 1 Removal efficiencies and mechanisms of Cr(VI)by different microorganisms
分类 Classification | 名称 Name of organism | 生物量 Biomass | pH | 温度 Temperature/℃ | 初始Cr(VI)浓度Initial Cr(VI)concentration/(mg·L-1) | 去除效率Removal efficiency/% | 去除机理 Removal mechanism | 时间 Time | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
细菌 Bacteria | Bacillus amyloliquefaciens | 0.3 g/100 mL | 7 | 37 | 500 | 82.1 | 生物吸附 Biosorption | 60 min | [ |
Bacillus sp. CRB-B1 | 2%(V/V) | 7 | 37 | 100 | 68.5 | 生物还原 Bioreduction | 36 h | [ | |
Bacillus cereus b-525k | - | 8 | 37 | - | 99.0 | 生物还原 Bioreduction | 6 d | [ | |
Stenotrophomonas acidaminiphila 4-1 | 10% (V/V) | 7.2 | 30 | 15 | 75.7 | 生物积累 Bioaccumulation 生物还原 Bioreduction | 7 d | [ | |
Bacillus strain T124 | - | 7 | 37 | 100 | 61.8 | 生物还原 Bioreduction 生物矿化 Biomineralization | 48 h | [ | |
真菌 Fungi | Aspergillus tubingensis AF3 | 5%(V/V) | 7 | 25 | 1 000 | 74.5 | 生物吸附 Biosorption | 12 d | [ |
Aspergillus niger | 1%(V/V) | 30 | 10-50 | ~100 | 生物还原 Bioreduction 生物积累 Bioaccumulation | 12 d | [ | ||
Penicillium chrysogenum CS1 | - | - | 27 | 50 | 65.2 | 生物矿化Biomineralization | 12 d | [ | |
微藻 Microalgae | Chlorella sorokiniana | - | 7 | 25 | 100 | 99.7 | 生物吸附 Biosorption | 7 d | [ |
酶 Enzyme | 来源 Source of strain | 定位 Location | 参考文献 Reference |
---|---|---|---|
SOD, CAT | Acinetobacter indicus yy-1 | 胞内 Intracellular | [ |
NitR | Phannonibacter phragmitetus BB | 胞内 Intracellular | [ |
YhdA | Bacillus subtilis | 胞内 Intracellular | [ |
ChrR | Bacillus sp. DHS-12(7) | 胞外 Extracellular | [ |
NR, NiR | Pisolithus sp.1 | 胞外 Extracellular | [ |
FesR | Alishewanella sp. WH16-1 | 胞外 Extracellular | [ |
CChR | Pichia guilliermondii ZJH-1 | 胞外 Extracellular | [ |
表2 铬还原酶分类
Table 2 Chromium reductase classification
酶 Enzyme | 来源 Source of strain | 定位 Location | 参考文献 Reference |
---|---|---|---|
SOD, CAT | Acinetobacter indicus yy-1 | 胞内 Intracellular | [ |
NitR | Phannonibacter phragmitetus BB | 胞内 Intracellular | [ |
YhdA | Bacillus subtilis | 胞内 Intracellular | [ |
ChrR | Bacillus sp. DHS-12(7) | 胞外 Extracellular | [ |
NR, NiR | Pisolithus sp.1 | 胞外 Extracellular | [ |
FesR | Alishewanella sp. WH16-1 | 胞外 Extracellular | [ |
CChR | Pichia guilliermondii ZJH-1 | 胞外 Extracellular | [ |
微生物修复机制 Microbial repair mechanism | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
生物吸附 Biosorption | 时间短 Short period 可回收重金属 Recyclable heavy metals | 易解吸Desorption 可逆Reversibility |
生物积累 Bioaccumulation | 耐受高浓度 Tolerance to high concentrations | 易流失Easy to loss 高能耗 High energy consumption |
生物还原 Bioreduction | 稳定性强 Strong stability | 受微生物活性影响 Affected by microbial activity |
生物矿化 Biomineralization | 成本低Low cost 能耗低 Low energy consumption 无二次污染 No secondary pollution | 不均匀Poor homogeneity 不持久Poor durability |
表3 铬微生物修复机制的优缺点
Table 3 Advantages and disadvantages of chromium microbial repair mechanisms
微生物修复机制 Microbial repair mechanism | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
生物吸附 Biosorption | 时间短 Short period 可回收重金属 Recyclable heavy metals | 易解吸Desorption 可逆Reversibility |
生物积累 Bioaccumulation | 耐受高浓度 Tolerance to high concentrations | 易流失Easy to loss 高能耗 High energy consumption |
生物还原 Bioreduction | 稳定性强 Strong stability | 受微生物活性影响 Affected by microbial activity |
生物矿化 Biomineralization | 成本低Low cost 能耗低 Low energy consumption 无二次污染 No secondary pollution | 不均匀Poor homogeneity 不持久Poor durability |
[1] | Hori M, Shozugawa K, Matsuo M. Hexavalent chromium pollution caused by dumped chromium slag at the urban park in Tokyo[J]. J Mater Cycles Waste Manag, 2015, 17(1): 201-205. |
[2] |
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria[J]. J Genet Eng Biotechnol, 2015, 13(1): 51-58.
doi: 10.1016/j.jgeb.2015.02.001 pmid: 30647566 |
[3] |
Bregnbak D, Johansen JD, Jellesen MS, et al. Chromium allergy and dermatitis: prevalence and main findings[J]. Contact Dermat, 2015, 73(5): 261-280.
doi: 10.1111/cod.2015.73.issue-5 URL |
[4] |
Moretto A. Hexavalent and trivalent chromium in leather: what should be done?[J]. Regul Toxicol Pharmacol, 2015, 73(2): 681-686.
doi: 10.1016/j.yrtph.2015.09.007 URL |
[5] |
Zhang XH, Zhang X, Wang XC, et al. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers[J]. BMC Public Health, 2011, 11: 224.
doi: 10.1186/1471-2458-11-224 URL |
[6] |
Luippold RS. Lung cancer mortality among chromate production workers[J]. Occup Environ Med, 2003, 60(6): 451-457.
pmid: 12771398 |
[7] |
Lunk HJ. Discovery, properties and applications of chromium and its compounds[J]. ChemTexts, 2015, 1(1): 6.
doi: 10.1007/s40828-015-0007-z URL |
[8] |
Zhitkovich A. Chromium in drinking water: sources, metabolism, and cancer risks[J]. Chem Res Toxicol, 2011, 24(10): 1617-1629.
doi: 10.1021/tx200251t pmid: 21766833 |
[9] |
Nithya K, Sathish A, Senthil Kumar P, et al. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II)ions[J]. J Ind Eng Chem, 2018, 59: 230-241.
doi: 10.1016/j.jiec.2017.10.028 URL |
[10] |
Kromah V, Zhang GH. Aqueous adsorption of heavy metals on metal sulfide nanomaterials: synthesis and application[J]. Water, 2021, 13(13): 1843.
doi: 10.3390/w13131843 URL |
[11] |
El Batouti M, Al-Harby NF, Elewa MM. A review on promising membrane technology approaches for heavy metal removal from water and wastewater to solve water crisis[J]. Water, 2021, 13(22): 3241.
doi: 10.3390/w13223241 URL |
[12] | Ren J, Cao TY, Yang X, et al. Ultrafiltration treatment of wastewater contained heavy metals complexed with palygorskite[J]. Pol J Chem Technol, 2020, 22(4): 1-9. |
[13] |
Kim J, Yoon S, Choi M, et al. Metal ion recovery from electrodialysis-concentrated plating wastewater via pilot-scale sequential electrowinning/chemical precipitation[J]. J Clean Prod, 2022, 330: 129879.
doi: 10.1016/j.jclepro.2021.129879 URL |
[14] |
Wang YC, Li A, Cui CW. Remediation of heavy metal-contaminated soils by electrokinetic technology: mechanisms and applicability[J]. Chemosphere, 2021, 265: 129071.
doi: 10.1016/j.chemosphere.2020.129071 URL |
[15] |
杨胜男, 刘娜, 宋东辉. 菌藻混合体系去除Cr(Ⅵ)的条件优化及Cr(Ⅵ)还原酶活性的测定[J]. 生物技术通报, 2019, 35(9): 83-92.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0322 |
Yang SN, Liu N, Song DH. Optimization of chromium(VI)removal by mixture of bacteriamicroalgae and determination of chromium(Ⅵ)reductase activities[J]. Biotechnol Bull, 2019, 35(9): 83-92. | |
[16] |
Babangida SK, Muhammad A, Garba A, et al. Antioxidants in bioremediation of chromium(VI)by conventional and nanotechnological approaches: a review[J]. Toxicol Environ Chem, 2021, 103(2): 162-183.
doi: 10.1080/02772248.2021.1947278 URL |
[17] | Mahapatra B, Dhal NK, Pradhan A, et al. Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: a mini-review[J]. Mater Today Proc, 2020, 30: 283-288. |
[18] |
Mohamed MSM, El-Arabi NI, El-Hussein A, et al. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation[J]. Folia Microbiol, 2020, 65(4): 687-696.
doi: 10.1007/s12223-020-00771-y |
[19] |
Lian GQ, Wang B, Lee XQ, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains[J]. Sci Total Environ, 2019, 697: 134119.
doi: 10.1016/j.scitotenv.2019.134119 URL |
[20] |
Shi L, Deng XP, Yang Y, et al. A Cr(VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation[J]. Chemosphere, 2019, 224: 862-872.
doi: 10.1016/j.chemosphere.2019.03.015 URL |
[21] |
Zhang Q, Amor K, Galer SJG, et al. Using stable isotope fractionation factors to identify Cr(VI)reduction pathways: metal-mineral-microbe interactions[J]. Water Res, 2019, 151: 98-109.
doi: 10.1016/j.watres.2018.11.088 URL |
[22] |
Ghosh S, Jasu A, Ray RR. Hexavalent chromium bioremediation with insight into molecular aspect: an overview[J]. Bioremediation J, 2021, 25(3): 225-251.
doi: 10.1080/10889868.2021.1884529 URL |
[23] |
Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies[J]. J Environ Sci Health C, 2016, 34(1): 1-32.
doi: 10.1080/10590501.2015.1096883 URL |
[24] |
Ansari R, Fahim NK. Application of polypyrrole coated on wood sawdust for removal of Cr(VI)ion from aqueous solutions[J]. React Funct Polym, 2007, 67(4): 367-374.
doi: 10.1016/j.reactfunctpolym.2007.02.001 URL |
[25] |
Gupta VK, Rastogi A, Nayak A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material[J]. J Colloid Interface Sci, 2010, 342(1): 135-141.
doi: 10.1016/j.jcis.2009.09.065 URL |
[26] |
Pushkar B, Sevak P, Parab S, et al. Chromium pollution and its bioremediation mechanisms in bacteria: a review[J]. J Environ Manag, 2021, 287: 112279.
doi: 10.1016/j.jenvman.2021.112279 URL |
[27] |
Ray RR. Adverse hematological effects of hexavalent chromium: an overview[J]. Interdiscip Toxicol, 2016, 9(2): 55-65.
doi: 10.1515/intox-2016-0007 pmid: 28652847 |
[28] |
Garg SK, Tripathi M, Singh SK, et al. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC(10510): characterization of PCP dechlorination products, bacterial structure, and functional groups[J]. Environ Sci Pollut Res, 2013, 20(4): 2288-2304.
doi: 10.1007/s11356-012-1101-z URL |
[29] | Nath K, Singh D, Shyam S, et al. Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb[J]. J Environ Biol, 2009, 30(2): 227-234. |
[30] |
Prasad S, Yadav KK, Kumar S, et al. Chromium contamination and effect on environmental health and its remediation: a sustainable approaches[J]. J Environ Manag, 2021, 285: 112174.
doi: 10.1016/j.jenvman.2021.112174 URL |
[31] |
Lytras G, Lytras C, Argyropoulou D, et al. A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater[J]. J Hazard Mater, 2017, 336: 41-51.
doi: S0304-3894(17)30298-4 pmid: 28472707 |
[32] |
Yan JY, Huang HR, Liu ZP, et al. Hedgehog signaling pathway regulates hexavalent chromium-induced liver fibrosis by activation of hepatic stellate cells[J]. Toxicol Lett, 2020, 320: 1-8.
doi: S0378-4274(19)30374-1 pmid: 31756458 |
[33] | Saleem MH, Afzal J, Rizwan M, et al. Chromium toxicity in plants: consequences on growth, chromosomal behavior andmineral nutrient status[J]. Turkish J Agric For, 2022, 46(3): 371-389. |
[34] |
Verma T, Srinath T, Gadpayle RU, et al. Chromate tolerant bacteria isolated from tannery effluent[J]. Bioresour Technol, 2001, 78(1): 31-35.
doi: 10.1016/S0960-8524(00)00168-1 URL |
[35] |
Ramachandran G, Chackaravarthi G, Rajivgandhi GN, et al. Biosorption and adsorption isotherm of chromium(VI)ions in aqueous solution using soil bacteria Bacillus amyloliquefaciens[J]. Environ Res, 2022, 212(Pt B): 113310.
doi: 10.1016/j.envres.2022.113310 URL |
[36] |
Tan H, Wang C, Zeng GQ, et al. Bioreduction and biosorption of Cr(VI)by a novel Bacillus sp. CRB-B1 strain[J]. J Hazard Mater, 2020, 386: 121628.
doi: 10.1016/j.jhazmat.2019.121628 URL |
[37] |
Elahi A, Rehman A, Zajif Hussain S, et al. Isolation and characterization of a highly effective bacterium Bacillus cereus b-525k for hexavalent chromium detoxification[J]. Saudi J Biol Sci, 2022, 29(4): 2878-2885.
doi: 10.1016/j.sjbs.2022.01.027 URL |
[38] |
Li L, Shang XF, Sun XJ, et al. Bioremediation potential of hexavalent chromium by a novel bacterium Stenotrophomonas acidaminiphila 4-1[J]. Environ Technol Innov, 2021, 22: 101409.
doi: 10.1016/j.eti.2021.101409 URL |
[39] |
Zhao XQ, Tang D, Jiang Y. Effect of the reduction-mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium[J]. Sci Total Environ, 2021, 777: 146190.
doi: 10.1016/j.scitotenv.2021.146190 URL |
[40] |
Anusha P, Narayanan M, Natarajan D, et al. Assessment of hexavalent chromium(VI)biosorption competence of indigenous Aspergillus tubingensis AF3 isolated from bauxite mine tailing[J]. Chemosphere, 2021, 282: 131055.
doi: 10.1016/j.chemosphere.2021.131055 URL |
[41] |
Xu H, Hao RX, Xu XY, et al. Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation[J]. Geomicrobiol J, 2021, 38(1): 20-28.
doi: 10.1080/01490451.2020.1807659 URL |
[42] |
Qian XY, Fang CL, Huang MS, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. J Clean Prod, 2017, 164: 198-208.
doi: 10.1016/j.jclepro.2017.06.195 URL |
[43] |
Husien S, Labena A, El-Belely EF, et al. Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells[J]. Water Pract Technol, 2019, 14(3): 515-529.
doi: 10.2166/wpt.2019.034 URL |
[44] |
Dhir B. Potential of biological materials for removing heavy metals from wastewater[J]. Environ Sci Pollut Res, 2014, 21(3): 1614-1627.
doi: 10.1007/s11356-013-2230-8 URL |
[45] |
Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application[J]. Bioresour Technol, 2014, 160: 3-14.
doi: 10.1016/j.biortech.2013.12.102 URL |
[46] |
Sharma P, Singh SP, Parakh SK, et al. Health hazards of hexavalent chromium(Cr(VI))and its microbial reduction[J]. Bioengineered, 2022, 13(3): 4923-4938.
doi: 10.1080/21655979.2022.2037273 pmid: 35164635 |
[47] | Bahafid W, Sayel H, Ghachtouli NE. Mechanism of hexavalent chromium detoxification using Cyberlindnera fabianii yeast isolated from contaminated site in Fez(Morocco)[J]. J Mater Environ Sci, 2013, 4(6): 840-847. |
[48] | Kasimani R, Seenivasagan R, Sundar K. Optimization of growth medium and biosorption of chromium using micro algae and cyanobacteria[M]// PrashanthiM, SundaramR, JeyaseelanA, et al. Bioremediation and Sustainable Technologies for Cleaner Environment. Cham: Springer, 2017: 347-358. |
[49] |
Tiquia-Arashiro SM. Lead absorption mechanisms in bacteria as strategies for lead bioremediation[J]. Appl Microbiol Biotechnol, 2018, 102(13): 5437-5444.
doi: 10.1007/s00253-018-8969-6 pmid: 29736824 |
[50] |
Kalola V, Desai C. Biosorption of Cr(VI)by Halomonas sp. DK4, a halotolerant bacterium isolated from chrome electroplating sludge[J]. Environ Sci Pollut Res, 2020, 27(22): 27330-27344.
doi: 10.1007/s11356-019-05942-0 |
[51] |
Xia SP, Song ZL, Jeyakumar P, et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater[J]. Crit Rev Environ Sci Technol, 2019, 49(12): 1027-1078.
doi: 10.1080/10643389.2018.1564526 URL |
[52] |
Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances(EPS)of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnol Adv, 2010, 28(6): 882-894.
doi: 10.1016/j.biotechadv.2010.08.001 URL |
[53] |
Sevak PI, Pushkar BK, Kapadne PN. Lead pollution and bacterial bioremediation: a review[J]. Environ Chem Lett, 2021, 19(6): 4463-4488.
doi: 10.1007/s10311-021-01296-7 |
[54] |
Tyagi B, Gupta B, Thakur IS. Biosorption of Cr(VI)from aqueous solution by extracellular polymeric substances(EPS)produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India[J]. Environ Res, 2020, 191: 110064.
doi: 10.1016/j.envres.2020.110064 URL |
[55] |
Zeng WM, Li F, Wu CC, et al. Role of extracellular polymeric substance(EPS)in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals[J]. Bioprocess Biosyst Eng, 2020, 43(1): 153-167.
doi: 10.1007/s00449-019-02213-7 |
[56] |
An H, Tian T, Wang ZT, et al. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms[J]. Sci Total Environ, 2022, 810: 151184.
doi: 10.1016/j.scitotenv.2021.151184 URL |
[57] |
Long DY, Hashmi MZ, Su XM, et al. Cr(VI)reduction by an extracellular polymeric substance(EPS)produced from a strain of Pseudochrobactrum saccharolyticum[J]. 3 Biotech, 2019, 9(3): 111.
doi: 10.1007/s13205-019-1641-8 |
[58] | Igiri BE, Okoduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review[J]. J Toxicol, 2018, 2018: 2568038. |
[59] |
Karthik C, Barathi S, Pugazhendhi A, et al. Evaluation of Cr(VI)reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium[J]. J Hazard Mater, 2017, 333: 42-53.
doi: 10.1016/j.jhazmat.2017.03.037 URL |
[60] |
Banerjee S, Misra A, Chaudhury S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. J Hazard Mater, 2019, 367: 215-223.
doi: S0304-3894(18)31178-6 pmid: 30594722 |
[61] | Elahi A, Rehman A. Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress[J]. Biotechnol Rep, 2019, 21: e00307. |
[62] |
Kumar V, Dwivedi SK. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237: 124567.
doi: 10.1016/j.chemosphere.2019.124567 URL |
[63] |
Alvarez AH, Moreno-Sánchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa[J]. J Bacteriol, 1999, 181(23): 7398-7400.
pmid: 10572148 |
[64] |
Lee L, Hsu CY, Yen HW. The effects of hydraulic retention time(HRT)on chromium(VI)reduction using autotrophic cultivation of Chlorella vulgaris[J]. Bioprocess Biosyst Eng, 2017, 40(12): 1725-1731.
doi: 10.1007/s00449-017-1827-6 |
[65] |
Prabhakaran DC, Subramanian S. Studies on the bioremediation of chromium from aqueous solutions using C. paurometabolum[J]. Trans Indian Inst Met, 2017, 70(2): 497-509.
doi: 10.1007/s12666-016-1009-2 URL |
[66] |
Antony GS, Manna A, Baskaran S, et al. Non-enzymatic reduction of Cr(VI)and it's effective biosorption using heat-inactivated biomass: a fermentation waste material[J]. J Hazard Mater, 2020, 392: 122257.
doi: 10.1016/j.jhazmat.2020.122257 URL |
[67] |
Romanenko VI, Koren'kov VN. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions[J]. Mikrobiologiia, 1977, 46(3): 414-417.
pmid: 895551 |
[68] |
Rahman A, Nahar N, Nawani NN, et al. Bioremediation of hexavalent chromium(VI)by a soil-borne bacterium, Enterobacter cloacae B2-DHA[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2015, 50(11): 1136-1147.
doi: 10.1080/10934529.2015.1047670 URL |
[69] |
Li H, Huang SB, Zhang YQ. Cr(VI)removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals[J]. J Microbiol, 2016, 54(9): 602-610.
doi: 10.1007/s12275-016-5295-5 URL |
[70] |
Rao STH, Papathoti NK, Gundeboina R, et al. Hexavalent chromium reduction from pollutant samples by Achromobacter xylosoxidans SHB 204 and its kinetics study[J]. Indian J Microbiol, 2017, 57(3): 292-298.
doi: 10.1007/s12088-017-0654-4 URL |
[71] |
Bharagava RN, Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries[J]. Ecotoxicol Environ Saf, 2018, 147: 102-109.
doi: 10.1016/j.ecoenv.2017.08.040 URL |
[72] |
El-Naggar NEA, El-Khateeb AY, Ghoniem AA, et al. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2[J]. Sci Rep, 2020, 10(1): 14043.
doi: 10.1038/s41598-020-70473-5 pmid: 32820181 |
[73] |
Hu L, Liu B, Li SZ, et al. Study on the oxidative stress and transcriptional level in Cr(VI)and Hg(II)reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil[J]. Chemosphere, 2021, 269: 128741.
doi: 10.1016/j.chemosphere.2020.128741 URL |
[74] |
Chai LY, Ding CL, Tang CJ, et al. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: from genome to gene and protein[J]. Ecotoxicol Environ Saf, 2018, 162: 139-146.
doi: 10.1016/j.ecoenv.2018.06.090 URL |
[75] | Valenzuela-García LI, Zapata BL, Ramírez-Ramírez N, et al. Novel biochemical properties and physiological role of the flavin mononucleotide oxidoreductase YhdA from Bacillus subtilis[J]. Appl Environ Microbiol, 2020, 86(20): e01688-e01620. |
[76] |
Karim ME, Sharmin SA, Moniruzzaman M, et al. Biotransformation of chromium(VI)by Bacillus sp. isolated from chromate contaminated landfill site[J]. Chem Ecol, 2020, 36(10): 922-937.
doi: 10.1080/02757540.2020.1799992 URL |
[77] |
Shi L, Liu BH, Zhang XZ, et al. Cloning of nitrate reductase and nitrite reductase genes and their functional analysis in regulating Cr(VI)reduction in ectomycorrhizal fungus Pisolithus sp. 1[J]. Front Microbiol, 2022, 13: 926748.
doi: 10.3389/fmicb.2022.926748 URL |
[78] |
Zhou ZJ, Zhu L, Dong YX, et al. Identification of a novel chromate and selenite reductase FesR in Alishewanella sp. WH16-1[J]. Front Microbiol, 2022, 13: 834293.
doi: 10.3389/fmicb.2022.834293 URL |
[79] | Hao KL, Zhang ZH, Wang BS, et al. Mechanism of Cr(VI)reduction by Pichia guilliermondii ZJH-1[J]. Iran J Biotechnol, 2022, 20(1): e3001. |
[80] |
Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(VI)resistance in bacteria and fungi[J]. FEMS Microbiol Rev, 2014, 38(4): 633-659.
doi: 10.1111/1574-6976.12051 URL |
[81] |
Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters[J]. Crit Rev Microbiol, 2016, 42(4): 607-633.
doi: 10.3109/1040841X.2014.974501 pmid: 25358056 |
[82] |
Huang XN, Min D, Liu DF, et al. Formation mechanism of organo-chromium(III)complexes from bioreduction of chromium(VI)by Aeromonas hydrophila[J]. Environ Int, 2019, 129: 86-94.
doi: 10.1016/j.envint.2019.05.016 URL |
[83] |
Chen YG, Gu GW. Preliminary studies on continuous chromium(VI)biological removal from wastewater by anaerobic-aerobic activated sludge process[J]. Bioresour Technol, 2005, 96(15): 1713-1721.
doi: 10.1016/j.biortech.2004.12.024 URL |
[84] |
Dhal B, Thatoi HN, Das NN, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. J Hazard Mater, 2013, 250/251: 272-291.
doi: 10.1016/j.jhazmat.2013.01.048 URL |
[85] |
Liu HL, Huang J, Zhang SZ, et al. Chromate interaction with the chromate reducing actinobacterium Intrasporangium chromatireducens Q5-1[J]. Geomicrobiol J, 2015, 32(7): 616-623.
doi: 10.1080/01490451.2014.971200 URL |
[86] |
Barkay T, Schaefer J. Metal and radionuclide bioremediation: issues, considerations and potentials[J]. Curr Opin Microbiol, 2001, 4(3): 318-323.
pmid: 11378486 |
[87] |
Qin W, Wang CY, Ma YX, et al. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications[J]. Adv Mater, 2020, 32(22): 1907833.
doi: 10.1002/adma.v32.22 URL |
[88] |
Kumari D, Li MM, Pan XL, et al. Effect of bacterial treatment on Cr(VI)remediation from soil and subsequent plantation of Pisum sativum[J]. Ecol Eng, 2014, 73: 404-408.
doi: 10.1016/j.ecoleng.2014.09.093 URL |
[89] |
Maity JP, Chen GS, Huang YH, et al. Ecofriendly heavy metal stabilization: microbial induced mineral precipitation(MIMP)and biomineralization for heavy metals within the contaminated soil by indigenous bacteria[J]. Geomicrobiol J, 2019, 36(7): 612-623.
doi: 10.1080/01490451.2019.1597216 URL |
[90] |
Thijs S, Sillen W, Weyens N, et al. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects[J]. Int J Phytoremediation, 2017, 19(1): 23-38.
doi: 10.1080/15226514.2016.1216076 URL |
[91] | 钟旻依, 张新全, 杨昕颖, 等. 植物对重金属铬胁迫响应机制的研究进展[J]. 草业科学, 2019, 36(8): 1962-1975. |
Zhong MY, Zhang XQ, Yang XY, et al. Recent advances in plant response to chromium stress[J]. Pratacultural Sci, 2019, 36(8): 1962-1975. | |
[92] |
Das PK, Das BP, Dash P. Chromite mining pollution, environmental impact, toxicity and phytoremediation: a review[J]. Environ Chem Lett, 2021, 19(2): 1369-1381.
doi: 10.1007/s10311-020-01102-w |
[93] |
Chen Y, Hu W, Li P, et al. Phytoremediation of hexavalent chromium by mung bean through bio-accumulation and bio-stabilization in a short duration[J]. Int J Environ Sci Technol, 2021, 18(10): 3023-3034.
doi: 10.1007/s13762-020-03001-7 |
[94] |
Ding H, Wang GD, Lou LL, et al. Physiological responses and tolerance of kenaf(Hibiscus cannabinus L.) exposed to chromium[J]. Ecotoxicol Environ Saf, 2016, 133: 509-518.
doi: 10.1016/j.ecoenv.2016.08.007 URL |
[95] |
Levizou E, Zanni AA, Antoniadis V. Varying concentrations of soil chromium(VI)for the exploration of tolerance thresholds and phytoremediation potential of the oregano(Origanum vulgare)[J]. Environ Sci Pollut Res, 2019, 26(1): 14-23.
doi: 10.1007/s11356-018-2658-y |
[96] |
Khan MS, Zaidi A, Ahmad Wani P, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environ Chem Lett, 2009, 7(1): 1-19.
doi: 10.1007/s10311-008-0155-0 URL |
[97] |
Nayak AK, Panda SS, Basu A, et al. Enhancement of toxic Cr(VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L[J]. Int J Phytoremediation, 2018, 20(7): 682-691.
doi: 10.1080/15226514.2017.1413332 URL |
[98] |
Chitraprabha K, Sathyavathi S. Phytoextraction of chromium from electroplating effluent by Tagetes erecta(L.)[J]. Sustain Environ Res, 2018, 28(3): 128-134.
doi: 10.1016/j.serj.2018.01.002 URL |
[99] | Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview[J]. Biotechnol Res Int, 2011, 2011: 941810. |
[100] |
Kumar V, Dwivedi SK. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors[J]. Environ Sci Pollut Res, 2021, 28(9): 10375-10412.
doi: 10.1007/s11356-020-11491-8 |
[101] | 张若诗, 田永强. 铬污染场地生物吸附修复技术研究进展[J]. 环境工程, 2020, 38(11): 187-195. |
Zhang RS, Tian YQ. Research progress of biosorption remediation technologies for chromium contaminated sites[J]. Environ Eng, 2020, 38(11): 187-195. | |
[102] |
Pradhan D, Sukla LB, Mishra BB, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp[J]. J Clean Prod, 2019, 209: 617-629.
doi: 10.1016/j.jclepro.2018.10.288 URL |
[103] |
Yan X, Liu XY, Zhang MJ, et al. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization[J]. Environ Sci Pollut Res, 2021, 28(18): 22359-22371.
doi: 10.1007/s11356-020-11852-3 |
[104] |
Shah V, Daverey A. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environ Technol Innov, 2020, 18: 100774.
doi: 10.1016/j.eti.2020.100774 URL |
[105] |
Lotfy SM, Mostafa AZ. Phytoremediation of contaminated soil with cobalt and chromium[J]. J Geochem Explor, 2014, 144: 367-373.
doi: 10.1016/j.gexplo.2013.07.003 URL |
[106] |
Davies FT, Puryear JD, Newton RJ, et al. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange[J]. J Plant Nutr, 2002, 25(11): 2389-2407.
doi: 10.1081/PLN-120014702 URL |
[1] | 王树萱, 向钢, 马小京, 于晶. Galectin-1的4T1乳腺癌过表达细胞的构建及其对增殖和转移的影响[J]. 生物技术通报, 2022, 38(11): 97-103. |
[2] | 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. |
[3] | 王文婧, 卢松霖, 刘雪, 李司宇, 郝雪萌, 李媛媛, 张杰. 包埋法固定钩状木霉孢子还原水体中六价铬的研究[J]. 生物技术通报, 2019, 35(9): 70-74. |
[4] | 杨胜男, 刘娜, 宋东辉. 菌藻混合体系去除Cr(VI)的条件优化及Cr(VI) 还原酶活性的测定[J]. 生物技术通报, 2019, 35(9): 83-92. |
[5] | 望子龙 ,罗学刚 ,司慧 ,王焯. 锰、砷对地衣芽孢杆菌铀富集的影响[J]. 生物技术通报, 2018, 34(6): 164-171. |
[6] | 袁白银, 刘钟颖. EDU脉冲追踪小鼠心脏第二心场细胞迁移方法的优化[J]. 生物技术通报, 2018, 34(12): 84-89. |
[7] | 袁白银, 胡继盛, 刘钟颖, 黄霞. 敲除Wdr1抑制小鼠原代血管平滑肌细胞的迁移和增殖[J]. 生物技术通报, 2018, 34(12): 179-185. |
[8] | 胡建燃,李平,雷海英,刘贤瑞. 潞党参多糖对宫颈癌细胞SiHa增殖和迁移的影响[J]. 生物技术通报, 2017, 33(5): 159-163. |
[9] | 刘宏博, 郑鹏, 印泽, 张同存. 应用CRISPR/Cas9系统下调长链非编码RNA HOTAIR[J]. 生物技术通报, 2017, 33(11): 180-187. |
[10] | 郝大程, 周建强, 韩君. 土壤重金属和有机污染物的微生物修复:生物强化和生物刺激[J]. 生物技术通报, 2017, 33(10): 9-17. |
[11] | 郭萍, 李红娜, 李峰, 叶婧. 石油污染微生物修复技术研究进展[J]. 生物技术通报, 2017, 33(10): 18-25. |
[12] | 张晶, 孙瑞秋, 唐延婷, 刘祥. 以MIF为靶标的抑制剂药物高通量筛选模型的建立和应用[J]. 生物技术通报, 2016, 32(9): 253-259. |
[13] | 王立辉, 严超宇, 王浩, 张翔宇. 土壤汞污染生物修复技术研究进展[J]. 生物技术通报, 2016, 32(2): 51-58. |
[14] | 李铎,李佳文,袁群琛,林川川,宋关斌. 溶血磷脂酸对不同转移性肝癌细胞迁移行为的影响[J]. 生物技术通报, 2016, 32(12): 189-194. |
[15] | 孙万虹, 陈丽华, 徐红伟. 氮磷含量对微生物修复油污土壤的影响[J]. 生物技术通报, 2015, 31(6): 157-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||