生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 114-125.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0125
收稿日期:
2023-02-15
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
侯秀丽,女,博士,教授,研究方向:土壤重金属污染生物修复、湖泊生态修复;E-mail: hxlyn@aliyun.com作者简介:
江润海,男,硕士研究生,研究方向:土壤重金属修复;E-mail: 1457113729@qq.com
基金资助:
JIANG Run-hai(), JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li()
Received:
2023-02-15
Published:
2023-08-26
Online:
2023-09-05
摘要:
重金属铅(Pb)是造成土壤污染进而对生物安全构成严重威胁的重金属之一,微生物在缓解植物受Pb的毒害中发挥重要作用。与植物根际相互作用过程中,土壤微生物通过多种途径改善根际微生态环境促进植物对Pb的修复及降低Pb的毒害作用。聚焦了土壤微生物与重金属Pb生物化学作用过程,综述了微生物对植物修复Pb污染的作用机制,结论如下:(1)微生物细胞壁表面存在大量的结合位点和带负电荷的官能团,对Pb具有较强的吸附作用。(2)微生物在与重金属作用过程中,阳离子与重金属发生离子间的相互交换作用。(3)微生物通过代谢分泌胞外分泌物,与重金属形成稳定的Pb络合物。(4)微生物通过氧化还原反应改变或转化土壤中重金属的形态,或将Pb氧化还原为难溶沉淀,降低土壤重金属的毒性。(5)微生物分泌的生长激素可以促进植物生长发育,提高植物抗性,其代谢产物可以改善根际重金属的特性,促进植物对Pb的吸收或将Pb固定在植物根际以降低Pb对植物的毒害作用。对微生物吸附Pb的主要机理进行了全面讨论,总结了微生物联合植物修复Pb污染土壤中微生物与植物间的作用关系,为深入了解土壤重金属修复过程中植物、微生物、重金属三者间相互作用的机制提供依据。
江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125.
JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil[J]. Biotechnology Bulletin, 2023, 39(8): 114-125.
微生物群 Microbial group | 微生物 Microbial | pH | 温度 Temperature/℃ | 时间 Time/h | 初始金属离子浓度 Initial metal ion concentration/(mg·L-1) | 吸附容量 Sorption capacity/(mg·g-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 阴沟肠杆菌 Enterobacter cloacae | _ | 30.0 | 48.0 | 7.20 | 2.3 | [ |
黄色微球菌 Micrococcus luteus | 7.0 | 27.0 | 12.0 | 272.3 | 1 965.0 | [ | |
芽孢杆菌 Bacillus sp. | 3.0 | 25.0 | 0.25 | 250.0 | 92.27 | [ | |
真菌 Fungi | 灰霉病菌 Botrytis camera | 4.0 | 25.0 | 1.50 | 350.0 | 107.1 | [ |
黄孢原毛平革菌 Phanerochaete chrysosporium | 6.0 | _ | 1.0 | 6 760.0 | 135.3 | [ | |
黑曲霉 Aspergillus nige | 4.5 | 30.0 | 1.0 | 100.0 | 34.4 | [ | |
藻类 Algae | 粉红藻 Asparagopsis armata | 4.0 | _ | 2.0 | 124.0 | 63.7 | [ |
蠕虫球虫 Codium vermilion | 5.0 | _ | 2.0 | 83.0 | 63.3 | [ | |
螺旋藻 Spirogyra sp. | 5.0 | 25.0 | 1.6 | 200.0 | 140.8 | [ |
表1 不同微生物吸附剂对金属Pb的生物吸附
Table 1 Biosorption of metal lead by different microbial adsorbents
微生物群 Microbial group | 微生物 Microbial | pH | 温度 Temperature/℃ | 时间 Time/h | 初始金属离子浓度 Initial metal ion concentration/(mg·L-1) | 吸附容量 Sorption capacity/(mg·g-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 阴沟肠杆菌 Enterobacter cloacae | _ | 30.0 | 48.0 | 7.20 | 2.3 | [ |
黄色微球菌 Micrococcus luteus | 7.0 | 27.0 | 12.0 | 272.3 | 1 965.0 | [ | |
芽孢杆菌 Bacillus sp. | 3.0 | 25.0 | 0.25 | 250.0 | 92.27 | [ | |
真菌 Fungi | 灰霉病菌 Botrytis camera | 4.0 | 25.0 | 1.50 | 350.0 | 107.1 | [ |
黄孢原毛平革菌 Phanerochaete chrysosporium | 6.0 | _ | 1.0 | 6 760.0 | 135.3 | [ | |
黑曲霉 Aspergillus nige | 4.5 | 30.0 | 1.0 | 100.0 | 34.4 | [ | |
藻类 Algae | 粉红藻 Asparagopsis armata | 4.0 | _ | 2.0 | 124.0 | 63.7 | [ |
蠕虫球虫 Codium vermilion | 5.0 | _ | 2.0 | 83.0 | 63.3 | [ | |
螺旋藻 Spirogyra sp. | 5.0 | 25.0 | 1.6 | 200.0 | 140.8 | [ |
[1] |
Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review[J]. Ecotoxicol Environ Saf, 2016, 126: 111-121.
doi: 10.1016/j.ecoenv.2015.12.023 URL |
[2] |
Khalid S, Shahid M, Niazi NK, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. J Geochem Explor, 2017, 182: 247-268.
doi: 10.1016/j.gexplo.2016.11.021 URL |
[3] | 环境保护部. 全国土壤污染状况调查公报[EB/OL]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. 2014-04-17/2023-02-14. |
Ministry of Environmental Protection. Report on the national general survey of soil contamination[EB/OL]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. 2014-04-17/2023-02-14. | |
[4] | 苏奇倩, 徐其静, 丁豪杰, 等. 微生物解磷特性及其Pb污染土壤修复应用[J]. 环境科学与技术, 2020, 43(12): 177-184. |
Su QQ, Xu QJ, Ding HJ, et al. Microbial phosphate-solubilization and its application in lead-contaminated soils remediation[J]. Environ Sci & Technol, 2020, 43(12): 177-184. | |
[5] |
Majumder AK, Al Nayeem A, Islam M, et al. Critical review of lead pollution in Bangladesh[J]. J Health Pollut, 2021, 11(31): 210902.
doi: 10.5696/2156-9614-11.31.210902 URL |
[6] |
Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus[J]. J Hazard Mater, 2009, 167(1/2/3): 713-716.
doi: 10.1016/j.jhazmat.2009.01.044 URL |
[7] |
Gupta P, Rani R, Chandra A, et al. Potential applications of Pseudomonas sp.(strain CPSB21)to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils[J]. Sci Rep, 2018, 8(1): 4860.
doi: 10.1038/s41598-018-23322-5 |
[8] |
Ma Y, Prasad MNV, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnol Adv, 2011, 29(2): 248-258.
doi: 10.1016/j.biotechadv.2010.12.001 pmid: 21147211 |
[9] |
Gavrilescu M. Enhancing phytoremediation of soils polluted with heavy metals[J]. Curr Opin Biotechnol, 2022, 74: 21-31.
doi: 10.1016/j.copbio.2021.10.024 URL |
[10] |
Dhiman SS, Selvaraj C, Li JL, et al. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola(Brassica napus L.) and the use of its biomass for ethanol production[J]. Fuel, 2016, 183: 107-114.
doi: 10.1016/j.fuel.2016.06.025 URL |
[11] | Mahajan P, Kaushal J. Role of phytoremediation in reducing cadmium toxicity in soil and water[J]. J Toxicol, 2018, 2018: 4864365. |
[12] |
Kaur P, Singh S, Kumar V, et al. Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes(Mart.) Solms[J]. Int J Phytoremediation, 2018, 20(2): 114-120.
doi: 10.1080/15226514.2017.1337071 URL |
[13] | 陈明. 用微生物吸附重金属离子的实验研究[D]. 沈阳: 东北大学, 2000. |
Chen M. Experimental study on adsorption of heavy metal ions by microorganisms[D]. Shenyang: Northeastern University, 2000. | |
[14] |
Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents[J]. Int J Environ Res Public Health, 2017, 14(1): 94.
doi: 10.3390/ijerph14010094 URL |
[15] |
Tüzün İ, Bayramoğlu G, Yalçın E, et al. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II)and Pb(II)ions onto microalgae Chlamydomonas reinhardtii[J]. J Environ Manag, 2005, 77(2): 85-92.
doi: 10.1016/j.jenvman.2005.01.028 URL |
[16] |
Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption[J]. Biotechnol Adv, 2008, 26(3): 266-291.
doi: 10.1016/j.biotechadv.2008.02.002 pmid: 18353595 |
[17] |
Vieira RH, Volesky B. Biosorption: a solution to pollution?[J]. Int Microbiol, 2000, 3(1): 17-24.
pmid: 10963329 |
[18] |
Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: current status and their future prospects[J]. Environ Eng Res, 2015, 20(1): 1-18.
doi: 10.4491/eer.2015.018 URL |
[19] |
Lesmana SO, Febriana N, Soetaredjo FE, et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater[J]. Biochem Eng J, 2009, 44(1): 19-41.
doi: 10.1016/j.bej.2008.12.009 URL |
[20] |
Kang CH, Oh SJ, Shin Y, et al. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea[J]. Ecol Eng, 2015, 74: 402-407.
doi: 10.1016/j.ecoleng.2014.10.009 URL |
[21] |
Puyen ZM, Villagrasa E, Maldonado J, et al. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008[J]. Bioresour Technol, 2012, 126: 233-237.
doi: 10.1016/j.biortech.2012.09.036 URL |
[22] |
Tunali S, Çabuk A, Akar T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil[J]. Chem Eng J, 2006, 115(3): 203-211.
doi: 10.1016/j.cej.2005.09.023 URL |
[23] |
Akar T, Tunali S, Kiran I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II)from aqueous solutions[J]. Biochem Eng J, 2005, 25(3): 227-235.
doi: 10.1016/j.bej.2005.05.006 URL |
[24] |
Iqbal M, Edyvean RGJ. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium[J]. Miner Eng, 2004, 17(2): 217-223.
doi: 10.1016/j.mineng.2003.08.014 URL |
[25] |
Dursun AY, Uslu G, Cuci Y, et al. Bioaccumulation of copper(II), lead(II)and chromium(VI)by growing Aspergillus niger[J]. Process Biochem, 2003, 38(12): 1647-1651.
doi: 10.1016/S0032-9592(02)00075-4 URL |
[26] |
Romera E, González F, Ballester A, et al. Comparative study of biosorption of heavy metals using different types of algae[J]. Bioresour Technol, 2007, 98(17): 3344-3353.
doi: 10.1016/j.biortech.2006.09.026 URL |
[27] |
Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies[J]. J Hazard Mater, 2008, 152(1): 407-414.
pmid: 17716814 |
[28] |
Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Res, 2003, 37(18): 4311-4330.
pmid: 14511701 |
[29] |
Holan ZR, Volesky B. Biosorption of lead and nickel by biomass of marine algae[J]. Biotechnol Bioeng, 1994, 43(11): 1001-1009.
pmid: 18615510 |
[30] |
Dixit R, Wasiullah, Malaviya D, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7(2): 2189-2212.
doi: 10.3390/su7022189 URL |
[31] |
Singh S, Kang SH, Mulchandani A, et al. Bioremediation: environmental clean-up through pathway engineering[J]. Curr Opin Biotechnol, 2008, 19(5): 437-444.
doi: 10.1016/j.copbio.2008.07.012 URL |
[32] |
Malik A. Metal bioremediation through growing cells[J]. Environ Int, 2004, 30(2): 261-278.
pmid: 14749114 |
[33] | Sahmoune M, Louhab K. Kinetic analysis of trivalent chromium biosorption by dead Streptomyces rimosus biomass[J]. Arabian J Science Engineering, 2010, 35(2): 69-80. |
[34] |
Yang T, Chen ML, Wang JH. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance[J]. Trac Trends Anal Chem, 2015, 66: 90-102.
doi: 10.1016/j.trac.2014.11.016 URL |
[35] |
Romero-González ME, Williams CJ, Gardiner PHE. Study of the mechanisms of cadmium biosorption by dealginated seaweed waste[J]. Environ Sci Technol, 2001, 35(14): 3025-3030.
doi: 10.1021/es991133r URL |
[36] |
Li WW, Yu HQ. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresour Technol, 2014, 160: 15-23.
doi: 10.1016/j.biortech.2013.11.074 URL |
[37] |
Fang LC, Huang QY, Wei X, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances(EPS), minerals and their composites[J]. Bioresour Technol, 2010, 101(15): 5774-5779.
doi: 10.1016/j.biortech.2010.02.075 URL |
[38] |
Kushwaha A, Hans N, Kumar S, et al. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies[J]. Ecotoxicol Environ Saf, 2018, 147: 1035-1045.
doi: 10.1016/j.ecoenv.2017.09.049 URL |
[39] |
Gabr RM, Hassan SHA, Shoreit AAM. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a[J]. Int Biodeterior Biodegrad, 2008, 62(2): 195-203.
doi: 10.1016/j.ibiod.2008.01.008 URL |
[40] |
Mack C, Wilhelmi B, Duncan JR, et al. Biosorption of precious metals[J]. Biotechnol Adv, 2007, 25(3): 264-271.
pmid: 17293076 |
[41] |
Maldonado J, Diestra E, Huang L, et al. Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain[J]. Ann Microbiol, 2010, 60(1): 113-120.
doi: 10.1007/s13213-010-0019-2 URL |
[42] | 李明明. 硫酸盐还原菌胞外聚合物与金属离子的交互作用[D]. 合肥: 合肥工业大学, 2014. |
Li MM. Analysis of the interaction between heavy metal and EPS isolated from sulfate reducing bacteria[D]. Hefei: Hefei University of Technology, 2014. | |
[43] |
Fang LC, Wei X, Cai P, et al. Role of extracellular polymeric substances in Cu(II)adsorption on Bacillus subtilis and Pseudomonas putida[J]. Bioresour Technol, 2011, 102(2): 1137-1141.
doi: 10.1016/j.biortech.2010.09.006 URL |
[44] |
Braissant O, Decho AW, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007, 5(4): 401-411.
doi: 10.1111/gbi.2007.5.issue-4 URL |
[45] |
Huang F, Wang ZH, Cai YX, et al. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions[J]. Ecotoxicol Environ Saf, 2018, 157: 216-226.
doi: 10.1016/j.ecoenv.2018.03.077 URL |
[46] |
Guibaud G, Bhatia D, D'Abzac P, et al. Cd(II)and Pb(II)sorption by extracellular polymeric substances(EPS)extracted from anaerobic granular biofilms: evidence of a pH sorption-edge[J]. J Taiwan Inst Chem Eng, 2012, 43(3): 444-449.
doi: 10.1016/j.jtice.2011.12.007 URL |
[47] | Hebbar KP, Gueniot B, Heyraud A, et al. Characterization of exopolysaccharides produced by rhizobacteria[J]. Appl Microbiol Biotechnol, 1992, 38(2): 248-253. |
[48] |
Çetinkaya Dönmez G, Aksu Z, Öztürk A, et al. A comparative study on heavy metal biosorption characteristics of some algae[J]. Process Biochem, 1999, 34(9): 885-892.
doi: 10.1016/S0032-9592(99)00005-9 URL |
[49] |
Aksu Z. Equilibrium and kinetic modelling of cadmium(II)biosorption by C. vulgaris in a batch system: effect of temperature[J]. Sep Purif Technol, 2001, 21(3): 285-294.
doi: 10.1016/S1383-5866(00)00212-4 URL |
[50] |
Guibaud G, van Hullebusch E, Bordas F. Lead and cadmium biosorption by extracellular polymeric substances(EPS)extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling[J]. Chemosphere, 2006, 64(11): 1955-1962.
pmid: 16483634 |
[51] |
Ozdemir G, Ozturk T, Ceyhan N, et al. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge[J]. Bioresour Technol, 2003, 90(1): 71-74.
doi: 10.1016/S0960-8524(03)00088-9 URL |
[52] | Bai J, Chao YQ, Chen YM, et al. The effect of interaction between Bacillus subtilis DBM and soil minerals on Cu(II)and Pb(II)adsorption[J]. J Environ Sci(China), 2019, 78: 328-337. |
[53] | 陈志. 芽孢杆菌修复Pb、铀和亚甲基蓝污染的相关机制研究[D]. 福州: 福建农林大学, 2015. |
Chen Z. Bioremediation mechanism of lead, uranium and methylene blue by Bacillus[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. | |
[54] |
Qiao WC, Zhang YH, Xia H, et al. Bioimmobilization of lead by Bacillus subtilis X3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms[J]. R Soc Open Sci, 2019, 6(2): 181701.
doi: 10.1098/rsos.181701 URL |
[55] |
Gamalero E, Fracchia L, Cavaletto M, et al. Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi[J]. Soil Biol Biochem, 2003, 35(1): 55-65.
doi: 10.1016/S0038-0717(02)00236-5 URL |
[56] |
Xing YH, Tan SX, Liu S, et al. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms[J]. Environ Res, 2022, 207: 112080.
doi: 10.1016/j.envres.2021.112080 URL |
[57] | 刘瑞霞, 汤鸿霄, 劳伟雄. 重金属的生物吸附机理及吸附平衡模式研究[J]. 化学进展, 2002, 14(2): 87-92. |
Liu RX, Tang HX, Lao WX. Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials[J]. Prog Chem, 2002, 14(2): 87-92. | |
[58] |
Cason ED, Williams PJ, Ojo E, et al. Hexavalent chromium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates[J]. World J Microbiol Biotechnol, 2017, 33(5): 88.
doi: 10.1007/s11274-017-2243-4 URL |
[59] |
Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum[J]. Biotechnol Prog, 2011, 27(5): 1464-1469.
doi: 10.1002/btpr.651 URL |
[60] |
Li A, Zhou C, Liu ZL, et al. Direct solid-state evidence of H2-induced partial U(VI)reduction concomitant with adsorption by extracellular polymeric substances(EPS)[J]. Biotechnol Bioeng, 2018, 115(7): 1685-1693.
doi: 10.1002/bit.v115.7 URL |
[61] |
Hu Q, Guo CX, Sun DZ, et al. Extracellular polymeric substances induced porous polyaniline for enhanced Cr(VI)removal from wastewater[J]. ACS Sustainable Chem Eng, 2017, 5(12): 11788-11796.
doi: 10.1021/acssuschemeng.7b03564 URL |
[62] |
Senko JM, Zhang GX, McDonough JT, et al. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage[J]. Geomicrobiol J, 2009, 26(2): 71-82.
doi: 10.1080/01490450802660193 URL |
[63] |
Govarthanan M, Lee KJ, Cho M, et al. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings[J]. Chemosphere, 2013, 90(8): 2267-2272.
doi: 10.1016/j.chemosphere.2012.10.038 pmid: 23149181 |
[64] |
Mire CE, Tourjee JA, O'Brien WF, et al. Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions[J]. Appl Environ Microbiol, 2004, 70(2): 855-864.
doi: 10.1128/AEM.70.2.855-864.2004 URL |
[65] |
Park JH, Bolan N, Megharaj M, et al. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria(Enterobacter sp.)[J]. J Environ Manag, 2011, 92(4): 1115-1120.
doi: 10.1016/j.jenvman.2010.11.031 URL |
[66] |
Naik MM, Dubey SK. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA[J]. Curr Microbiol, 2011, 62(2): 409-414.
doi: 10.1007/s00284-010-9722-2 URL |
[67] |
Borremans B, Hobman JL, Provoost A, et al. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34[J]. J Bacteriol, 2001, 183(19): 5651-5658.
pmid: 11544228 |
[68] | 姚倩, 朱晓丽, 李梦. 一株解磷菌ID-a修复重金属污染土壤效应分析[J]. 化学工程, 2016, 44(7): 6-10. |
Yao Q, Zhu XL, Li M. The effect analysis of heavy metal contaminated soil by an phosphate-solubilizing bacteria ID-a[J]. Chem Eng China, 2016, 44(7): 6-10. | |
[69] |
Wu CH, Wood TK, Mulchandani A, et al. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals[J]. Appl Environ Microbiol, 2006, 72(2): 1129-1134.
doi: 10.1128/AEM.72.2.1129-1134.2006 URL |
[70] | Van Aken B, Tehrani R, Schnoor JL. Endophyte-assisted phytoremediation of explosives in poplar trees by methylobacterium populi BJ001T[M]// Endophytes of Forest Trees. Dordrecht: Springer, 2011: 217-234. |
[71] |
Shim H, Chauhan S, Ryoo D, et al. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria[J]. Appl Environ Microbiol, 2000, 66(11): 4673-4678.
doi: 10.1128/AEM.66.11.4673-4678.2000 URL |
[72] |
杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0811 |
Yang L, Xin JP, Tian RN. Research progress in the mitigative effects of rhizosphere microorganisms on heavy metal stress in plants and their mechanisms[J]. Biotechnol Bull, 2022, 38(3): 213-225.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0811 |
|
[73] |
Akiyama K, Matsuzaki KI, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-827.
doi: 10.1038/nature03608 |
[74] |
Glick BR, Penrose DM, Li JP. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. J Theor Biol, 1998, 190(1): 63-68.
doi: 10.1006/jtbi.1997.0532 pmid: 9473391 |
[75] |
Rajkumar M, Freitas H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 2008, 71(5): 834-842.
doi: 10.1016/j.chemosphere.2007.11.038 pmid: 18164365 |
[76] | 姬文秀, 李虎林, 冷雪, 等. 产ACC脱氨酶人参内生细菌的分离和促生特性分析[J]. 吉林农业大学学报, 2019, 41(2): 168-174. |
Ji WX, Li HL, Leng X, et al. Isolation and promoting growth properties of endophytic bacteria producing ACC deaminase of Panax ginseng[J]. J Jilin Agric Univ, 2019, 41(2): 168-174. | |
[77] |
Liu ZF, Ge HG, Li C, et al. Enhanced phytoextraction of heavy metals from contaminated soil by plant Co-cropping associated with PGPR[J]. Water Air Soil Pollut, 2015, 226(3): 29.
doi: 10.1007/s11270-015-2304-y URL |
[78] |
Saleem M, Naeem Asghar H, Ahmad Zahir Z, et al. Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination[J]. Rev Int Contam Amb, 2019, 35(4): 999-1009.
doi: 10.20937/RICA URL |
[79] |
Shabaan M, Asghar HN, Akhtar MJ, et al. Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L[J]. Int J Phytoremediation, 2021, 23(8): 837-845.
doi: 10.1080/15226514.2020.1859988 URL |
[80] | Bolan NS, Adriano DC, Naidu R. Role of phosphorus in(Im)mobilization and bioavailability of heavy metals in the soil-plant system[J]. Rev Environ Contam Toxicol, 2003, 177: 1-44. |
[81] |
Szuba A, Karliński L, Krzesłowska M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions[J]. Plant Soil, 2017, 412(1): 253-266.
doi: 10.1007/s11104-016-3062-3 URL |
[82] | 李益斌. 解磷菌改良典型重金属污染土壤的应用研究[D]. 北京: 北京有色金属研究总院, 2018. |
Li YB. Applied research on improvement of typical heavy metal contaminated soils using phosphate-solubilizing bacteria[D]. Beijing: General Research Insititute for Nonferrous Metals, 2018. | |
[83] | 傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
Fu XP, Dou CM, Hu SP, et al. A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J]. Chin J Plant Ecol, 2010, 34(11): 1354-1358. | |
[84] | 施积炎, 陈英旭, 林琦, 等. 根分泌物与微生物对污染土壤重金属活性的影响[J]. 中国环境科学, 2004, 24(3): 316-319. |
Shi JY, Chen YX, Lin Q, et al. The influence of root exudates and microbe on heavy metal activity in contaminated soil[J]. China Environ Sci, 2004, 24(3): 316-319. | |
[85] | 姚洁, 鲍立宁, 姜宇, 等. 植物-耐Pb微生物联合修复Pb污染土壤研究[J]. 山东理工大学学报: 自然科学版, 2022, 36(4): 7-13. |
Yao J, Bao LN, Jiang Y, et al. Research on the joint repair of lead-contaminated soil by plant-lead-resistant microorganisms[J]. J Shandong Univ Technol Nat Sci Ed, 2022, 36(4): 7-13. | |
[86] |
Kotoky R, Pandey P. Plant-microbe symbiosis as an instrument for the mobilization and removal of heavy metals from contaminated soils-A realistic approach[J]. Curr Biotechnol, 2018, 7(2): 71-79.
doi: 10.2174/2211550106666170321104354 URL |
[87] |
郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015, 24(7): 1228-1234.
doi: 10.16258/j.cnki.1674-5906.2015.07.023 |
Guo JK, Dong MF, Ding YZ, et al. Effects of plant growth promoting rhizobacteria on plants heavy metal uptake and transport: a review[J]. Ecol Environ Sci, 2015, 24(7): 1228-1234. | |
[88] |
Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance[J]. J Exp Bot, 2002, 53(366): 1-11.
pmid: 11741035 |
[89] |
Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress[J]. Mycorrhiza, 2005, 16(1): 51-60.
doi: 10.1007/s00572-005-0016-7 pmid: 16136340 |
[90] |
Repetto O, Bestel-Corre G, Dumas-Gaudot E, et al. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J]. New Phytol, 2003, 157(3): 555-567.
doi: 10.1046/j.1469-8137.2003.00682.x URL |
[91] |
Ouziad F, Hildebrandt U, Schmelzer E, et al. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J]. J Plant Physiol, 2005, 162(6): 634-649.
doi: 10.1016/j.jplph.2004.09.014 URL |
[92] | González-Guerrero M, Azcón-Aguilar C, Mooney M, et al. Characterization of a glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J]. Fungal Genetics & Biology, 2005, 42(2):130-140. |
[93] | 江春玉. 植物促生细菌提高植物对Pb、镉的耐受性及富集效应研究[D]. 南京: 南京农业大学, 2008. |
Jiang CY. The effects of plant-growth promoting bacteria on promoting lead and cadmium tolerance and accumulation of plants[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[94] |
Dary M, Chamber-Pérez MA, Palomares AJ, et al. “in situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. J Hazard Mater, 2010, 177(1/2/3): 323-330.
doi: 10.1016/j.jhazmat.2009.12.035 URL |
[95] |
Wang YH, Wang MQ, Li Y, et al. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress[J]. PLoS One, 2018, 13(4): e0196408.
doi: 10.1371/journal.pone.0196408 URL |
[96] |
Janeeshma E, Puthur JT. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J]. Arch Microbiol, 2020, 202(1): 1-16.
doi: 10.1007/s00203-019-01730-z pmid: 31552478 |
[97] |
Sarathambal C, Khankhane PJ, Gharde Y, et al. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L[J]. Int J Phytoremediation, 2017, 19(4): 360-370.
doi: 10.1080/15226514.2016.1225289 URL |
[98] |
Naeem M, Shabbir A, Ali Ansari A, et al. Hyacinth bean(Lablab purpureus L.) -An underutilised crop with future potential[J]. Sci Hortic, 2020, 272: 109551.
doi: 10.1016/j.scienta.2020.109551 URL |
[99] |
Palma F, López-Gómez M, Tejera NA, et al. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition[J]. Plant Sci, 2013, 208: 75-82.
doi: 10.1016/j.plantsci.2013.03.015 pmid: 23683932 |
[100] |
Zhang HH, Tang M, Chen H, et al. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations[J]. Eur J Soil Biol, 2010, 46(5): 306-311.
doi: 10.1016/j.ejsobi.2010.05.006 URL |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[5] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[6] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[7] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[8] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[9] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[10] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[11] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[12] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[13] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[14] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[15] | 胡锦超, 沈文琦, 徐超业, 樊雅祺, 卢浩宇, 蒋雯杰, 李世龙, 晋洪晨, 骆健美, 王敏. 微生物酸胁迫耐受性能强化的研究进展[J]. 生物技术通报, 2023, 39(11): 137-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||