生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 52-61.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0555
刘月娥(), 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然()
收稿日期:
2023-06-12
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
赵久然,男,博士,研究员,研究方向:玉米遗传育种与高产栽培;E-mail: maizezhao@126.com作者简介:
刘月娥,女,博士,研究方向:玉米栽培生理生态;E-mail:lye0520@163.com
基金资助:
LIU Yue-e(), XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran()
Received:
2023-06-12
Published:
2023-08-26
Online:
2023-09-05
摘要:
玉米作为我国种植面积最大、总产最高的第一大粮食作物,对我国粮食安全、饲料保障都至关重要。在耕地资源日趋紧张的形势下,未来我国粮食扩大面积的空间有限,产能提升主要依靠单产提高。2023年中央一号文件明确提出要全力抓好粮食生产,开展吨粮田建设,实施玉米单产提升工程。玉米超高产是优良品种、生产条件和栽培管理技术等最高水平的体现,本文全面综述了我国玉米超高产研究的政策支持、高产纪录现状、超高产田的分布及气象特点、高产创建的技术要点。在此基础上,从增加科研投入加强新品种选育、加强栽培技术集成进行示范推广、加强农田基础设施建设等方面提出了我国玉米大面积高产创建的建议。
刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61.
LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China[J]. Biotechnology Bulletin, 2023, 39(8): 52-61.
时间Year | 夏玉米 Summer maize | 时间Year | 春玉米 Spring maize | ||||||
---|---|---|---|---|---|---|---|---|---|
品种Hybrid | 产量Yield/(kg/亩) | 地点Site | 品种Hybrid | 产量Yield/(kg/亩) | 地点Site | ||||
1979年 | 掖单2号 | 776.9 | 山东莱州 | 2009年 | 郑单958 | 1 360.1 | 新疆奇台 | ||
1986年 | “8112*80104”夏玉米新组合 | 962.1 | 2011年 | 良玉66 | 1 385.4 | ||||
1988年 | “340*479”夏玉米新组合 | 1 008.9 | 2012年 | 良玉66 | 1 410.3 | ||||
1989年 | 掖单13号 | 1 069.3 | 2013年 | 登海618 | 1 511.7 | ||||
2005年 | 登海超试1号 | 1 402.9 | 2017年 | MC670 | 1 517.1 | ||||
2014年 | 登海661 | 1 335.8 | 2020年 | MC670 | 1 663.3 |
表1 我国玉米历年高产纪录
Table 1 The high yield record of maize in China
时间Year | 夏玉米 Summer maize | 时间Year | 春玉米 Spring maize | ||||||
---|---|---|---|---|---|---|---|---|---|
品种Hybrid | 产量Yield/(kg/亩) | 地点Site | 品种Hybrid | 产量Yield/(kg/亩) | 地点Site | ||||
1979年 | 掖单2号 | 776.9 | 山东莱州 | 2009年 | 郑单958 | 1 360.1 | 新疆奇台 | ||
1986年 | “8112*80104”夏玉米新组合 | 962.1 | 2011年 | 良玉66 | 1 385.4 | ||||
1988年 | “340*479”夏玉米新组合 | 1 008.9 | 2012年 | 良玉66 | 1 410.3 | ||||
1989年 | 掖单13号 | 1 069.3 | 2013年 | 登海618 | 1 511.7 | ||||
2005年 | 登海超试1号 | 1 402.9 | 2017年 | MC670 | 1 517.1 | ||||
2014年 | 登海661 | 1 335.8 | 2020年 | MC670 | 1 663.3 |
[1] |
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967): 818-822.
doi: 10.1126/science.1183700 pmid: 20150489 |
[2] | Dubois O. The state of the world's land and water resources for food and agriculture: managing systems at risk[DB]. FAO, Rome and Earthscan, London, 2011. |
[3] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[4] | 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析[J]. 中国农业资源与区划, 2019, 40(1): 7-16. |
Chen YJ, Wang QQ, Xiang Y. Analysis on the status, superiority and self-sufficiency ratio of maize in China[J]. Chin J Agric Resour Reg Plan, 2019, 40(1): 7-16. | |
[5] | 赵久然, 王荣焕, 刘新香. 我国玉米产业现状及生物育种发展趋势[J]. 生物产业技术, 2016(3): 45-52. |
Zhao JR, Wang RH, Liu XX. Present situation of maize industry in China and development trend of biological breeding[J]. Biotechnol Bus, 2016(3): 45-52. | |
[6] |
Evans LT, Fischer RA. Yield potential: its definition, measurement, and significance[J]. Crop Sci, 1999, 39(6): 1544-1551.
doi: 10.2135/cropsci1999.3961544x URL |
[7] | 王庆成, 刘开昌. 山东夏玉米高产栽培理论与实践[J]. 玉米科学, 2004, 12(S2): 60-62, 65. |
Wang QC, Liu KC. Theory and practice of high yield cultivation of summer maize in Shandong Province[J]. J Maize Sci, 2004, 12(S2): 60-62, 65. | |
[8] | 赵久然. 超级玉米指标及选育模式[J]. 玉米科学, 2005, 13(1): 3-4, 9. |
Zhao JR. Index and breeding mode of super corn[J]. J Maize Sci, 2005, 13(1): 3-4, 9. | |
[9] | 赵久然, 孙世贤. 对超级玉米育种目标及技术路线的再思考[J]. 玉米科学, 2007, 15(1): 21-23, 28. |
Zhao JR, Sun SX. Re-thinking on breeding objective and technical route of super maize[J]. J Maize Sci, 2007, 15(1): 21-23, 28. | |
[10] | 魏常敏, 张则林, 等. 2020年美国玉米高产竞赛简报[J]. 玉米科学, 2021, 29(3): 48-54. |
Wei CM, Zhang ZL, et al. Introduction of American national corn yield contest in 2020[J]. J Maize Sci, 2021, 29(3): 48-54. | |
[11] | 代玉仙, 郭琦, 等. 2016年美国玉米高产竞赛简报[J]. 玉米科学, 2017, 25(2): 45-48. |
Dai YX, Guo Q, et al. Introduction of America national corn yield contest in 2016[J]. J Maize Sci, 2017, 25(2): 45-48. | |
[12] | 张洪艳, 吕超, 代玉仙, 等. 2014年美国玉米高产竞赛简报[J]. 玉米科学, 2015, 23(3): 154-158. |
Zhang HY, Lv C, Dai YX, et al. Introduction of America national maize yield contest in 2014[J]. J Maize Sci, 2015, 23(3): 154-158. | |
[13] | 刘志全, 路立平, 沈海波, 等. 美国玉米高产竞赛简介[J]. 玉米科学, 2004, 12(4): 110-113. |
Liu ZQ, Lu LP, Shen HB, et al. Introduction on America corn yield contest[J]. J Maize Sci, 2004, 12(4): 110-113. | |
[14] | 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示[J]. 玉米科学, 2009, 17(5): 156-159, 163. |
Zhao JR, Wang RH. Factors promoting the steady increase of American maize production and their enlightenments for China[J]. J Maize Sci, 2009, 17(5): 156-159, 163. | |
[15] | 陈国平, 杨国航, 赵明, 等. 玉米小面积超高产创建及配套栽培技术研究[J]. 玉米科学, 2008, 16(4): 1-4. |
Chen GP, Yang GH, Zhao M, et al. Studies on maize small area super-high yield trails and cultivation technique[J]. J Maize Sci, 2008, 16(4): 1-4. | |
[16] | 陈国平, 王荣焕, 赵久然. 玉米高产田的产量结构模式及关键因素分析[J]. 玉米科学, 2009, 17(4): 89-93. |
Chen GP, Wang RH, Zhao JR. Analysis on yield structural model and key factors of maize high-yield plots[J]. J Maize Sci, 2009, 17(4): 89-93. | |
[17] | 陈国平, 高聚林, 赵明, 等. 近年我国玉米超高产田的分布、产量构成及关键技术[J]. 作物学报, 2012, 38(1): 80-85. |
Chen GP, Gao JL, Zhao M, et al. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years[J]. Acta Agron Sin, 2012, 38(1): 80-85.
doi: 10.3724/SP.J.1006.2012.00080 URL |
|
[18] |
Yang YS, Guo XX, Liu HF, et al. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution[J]. J Integr Agric, 2021, 20(2): 482-493.
doi: 10.1016/S2095-3119(20)63581-X URL |
[19] |
Yang YS, Guo XX, Liu GZ, et al. Solar radiation effects on dry matter accumulations and transfer in maize[J]. Front Plant Sci, 2021, 12: 727134.
doi: 10.3389/fpls.2021.727134 URL |
[20] |
Yang YS, Liu GZ, Guo XX, et al. Quantitative relationship between solar radiation and grain filling parameters of maize[J]. Front Plant Sci, 2022, 13: 906060.
doi: 10.3389/fpls.2022.906060 URL |
[21] |
Yang YS, Guo XX, Hou P, et al. Quantitative effects of solar radiation on maize lodging resistance mechanical properties[J]. Field Crops Res, 2020, 255: 107906.
doi: 10.1016/j.fcr.2020.107906 URL |
[22] |
Yang YS, Xu WJ, Hou P, et al. Improving maize grain yield by matching maize growth and solar radiation[J]. Sci Rep, 2019, 9(1): 3635.
doi: 10.1038/s41598-019-40081-z pmid: 30842514 |
[23] | 董树亭, 高荣岐, 胡昌浩, 等. 玉米生态生理与产量品质形成[M]. 北京: 高等教育出版社, 2006. |
Dong ST, Gao RQ, Hu CH, et al. Maize Eco-physiology and formation of yield and quality in maize[M]. Beijing: Higher Education Press, 2006. 350-355. | |
[24] |
Liu YE, Hou P, Xie RZ, et al. Spatial adaptabilities of spring maize to variation of climatic conditions[J]. Crop Sci, 2013, 53(4): 1693-1703.
doi: 10.2135/cropsci2012.12.0688 URL |
[25] |
Hou P, Liu YE, Liu WM, et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China[J]. Resour Conserv Recycl, 2021, 174: 105811.
doi: 10.1016/j.resconrec.2021.105811 URL |
[26] |
Liu GZ, Yang YS, Guo XX, et al. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha -1[J]. Field Crops Res, 2022, 283: 108544.
doi: 10.1016/j.fcr.2022.108544 URL |
[27] | 徐庆章, 王庆成, 牛玉贞, 等. 玉米株型与群体光合作用的关系研究[J]. 作物学报, 1995, 21(4): 492-496. |
Xu QZ, Wang QC, Niu YZ, et al. Studies on relationship between plant type and canopy photosynthesis in maize[J]. Acta Agron Sin, 1995, 21(4): 492-496. | |
[28] | 王庆成, 牛玉贞, 徐庆章, 等. 株型对玉米群体光合速率和产量的影响[J]. 作物学报, 1996, 22(2): 223-227. |
Wang QC, Niu YZ, Xu QZ, et al. Effect of plant-type on rate of canopy apparent photosynthesis and yield in maize(Zea mays L.)[J]. Acta Agron Sin, 1996, 22(2): 223-227. | |
[29] | 杨今胜, 王永军, 张吉旺, 等. 三个超高产夏玉米品种的干物质生产及光合特性[J]. 作物学报, 2011, 37(2): 355-361. |
Yang JS, Wang YJ, Zhang JW, et al. Dry matter production and photosynthesis characteristics of three hybrids of maize(Zea mays L.) with super-high-yielding potential[J]. Acta Agron Sin, 2011, 37(2): 355-361.
doi: 10.3724/SP.J.1006.2011.00355 URL |
|
[30] |
Liu GZ, Hou P, Xie RZ, et al. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha -1[J]. Field Crops Res, 2017, 213: 221-230.
doi: 10.1016/j.fcr.2017.08.011 URL |
[31] | 霍仕平, 晏庆九, 黄文章. 纬度和海拔对西南春玉米区中熟玉米品种生育期的效应[J]. 作物学报, 1995, 21(3): 380-384. |
Huo SP, Yan QJ, Huang WZ. Effects of latitude and altitude on growth period of mid-mature maize varieties in southwest spring maize region[J]. Acta Agron Sin, 1995, 21(3): 380-384. | |
[32] |
王晓慧, 张磊, 刘双利, 等. 不同熟期春玉米品种的籽粒灌浆特性[J]. 中国农业科学, 2014, 47(18): 3557-3565.
doi: 10.3864/j.issn.0578-1752.2014.18.004 |
Wang XH, Zhang L, Liu SL, et al. Grain filling characteristics of maize hybrids differing in maturities[J]. Sci Agric Sin, 2014, 47(18): 3557-3565. | |
[33] | 钱春荣, 王荣焕, 赵久然, 等. 不同熟期玉米干物质积累、分配与转运特征[J]. 生态学杂志, 2017, 36(8): 2177-2183. |
Qian CR, Wang RH, Zhao JR, et al. Characteristics of accumulation, distribution and translocation of dry matter in maize hybrids differing in maturity duration[J]. Chin J Ecol, 2017, 36(8): 2177-2183. | |
[34] | 冷志杰, 贝丽霞, 徐中儒, 等. 不同熟期大豆、玉米间作的产量产值数学模型的建立[J]. 吉林农业大学学报, 1998, 20(1): 16-19. |
Leng ZJ, Bei LX, Xu ZR, et al. The mathematical models of yield and output value of intercrop corn and soybean[J]. J Jilin Agric Univ, 1998, 20(1): 16-19. | |
[35] | 杨涛, 梁宗锁, 薛吉全, 等. 不同玉米品种水分利用效率的差异性研究[J]. 农业工程学报, 2005, 21(10): 21-25. |
Yang T, Liang ZS, Xue JQ, et al. Diversity of water use efficiency of various maize varieties[J]. Trans Chin Soc Agric Eng, 2005, 21(10): 21-25. | |
[36] | 张卫星, 赵致, 等. 不同玉米杂交种对水分和氮胁迫的响应及其抗逆性[J]. 中国农业科学, 2007, 40(7): 1361-1370. |
Zhang WX, Zhao Z, et al. Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance[J]. Sci Agric Sin, 2007, 40(7): 1361-1370.
doi: 10.3864/j.issn.0578-1752.at-2006-7640 |
|
[37] | 刘战东, 肖俊夫, 于景春, 等. 春玉米品种和种植密度对植株性状和耗水特性的影响[J]. 农业工程学报, 2012, 28(11): 125-131. |
Liu ZD, Xiao JF, Yu JC, et al. Effects of varieties and planting density on plant traits and water consumption characteristics of spring maize[J]. Trans Chin Soc Agric Eng, 2012, 28(11): 125-131. | |
[38] |
Li RY, Zeng YJ, Xu J, et al. Genetic variation for maize root architecture in response to drought stress at the seedling stage[J]. Breed Sci, 2015, 65(4): 298-307.
doi: 10.1270/jsbbs.65.298 URL |
[39] |
Meng QF, Chen XP, et al. Growing sensitivity of maize to water scarcity under climate change[J]. Sci Rep, 2016, 6: 19605.
doi: 10.1038/srep19605 pmid: 26804136 |
[40] | 徐建亭, 姜雯. 不同夏玉米品种氮积累和利用效率差异的研究[J]. 玉米科学, 2014, 22(4): 62-66. |
Xu JT, Jiang W. Differences in nitrogen accumulation and nitrogen utilization efficiency among summer maize cultivars[J]. J Maize Sci, 2014, 22(4): 62-66. | |
[41] | 王玲敏, 叶优良, 等. 施氮对不同品种玉米产量、氮效率的影响[J]. 中国生态农业学报, 2012, 20(5): 529-535. |
Wang LM, Ye YL, et al. Effect of nitrogen fertilization on maize yield and nitrogen efficiency of different maize varieties[J]. Chin J Eco Agric, 2012, 20(5): 529-535.
doi: 10.3724/SP.J.1011.2012.00529 URL |
|
[42] | 周培禄, 任红, 齐华, 等. 氮肥用量对两种不同类型玉米杂交种物质生产及氮素利用的影响[J]. 作物学报, 2017, 43(2): 263-276. |
Zhou PL, Ren H, Qi H, et al. Effects of nitrogen application rates on dry matter productivity and nitrogen utilization of different type maize hybrids[J]. Acta Agron Sin, 2017, 43(2): 263-276.
doi: 10.3724/SP.J.1006.2017.00263 URL |
|
[43] |
Cattivelli L, Rizza F, Badeck FW, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics[J]. Field Crops Res, 2008, 105(1/2): 1-14.
doi: 10.1016/j.fcr.2007.07.004 URL |
[44] |
Ma DL, Li SK, Zhai LC, et al. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s[J]. Field Crops Res, 2020, 250: 107766.
doi: 10.1016/j.fcr.2020.107766 URL |
[45] | 杨恒山, 张玉芹, 徐寿军, 等. 超高产春玉米干物质及养分积累与转运特征[J]. 植物营养与肥料学报, 2012, 18(2): 315-323. |
Yang HS, Zhang YQ, Xu SJ, et al. Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize[J]. Plant Nutr Fertil Sci, 2012, 18(2): 315-323. | |
[46] | 黄智鸿, 王思远, 包岩, 等. 超高产玉米品种干物质积累与分配特点的研究[J]. 玉米科学, 2007, 15(3): 95-98. |
Huang ZH, Wang SY, Bao Y, et al. Studies on dry matter accumulation and distributive characteristic in super high-yield maize[J]. J Maize Sci, 2007, 15(3): 95-98. | |
[47] | 刘克礼, 刘景辉. 春玉米干物质积累、分配与转移规律的研究[J]. 内蒙古农牧学院学报, 1994, 15(1): 1-10. |
Liu KL, Liu JH. A study on the regularity of accumulation, distribution and translation of dry matter in spring maize[J]. J Inn Mong Inst Agric Anim Husb, 1994, 15(1): 1-10. | |
[48] |
Hou P, Liu YE, Liu WM, et al. How to increase maize production without extra nitrogen input[J]. Resour Conserv Recycl, 2020, 160: 104913.
doi: 10.1016/j.resconrec.2020.104913 URL |
[49] |
Testa G, Reyneri A, Blandino M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings[J]. Eur J Agron, 2016, 72: 28-37.
doi: 10.1016/j.eja.2015.09.006 URL |
[50] |
Maddonni GA, Otegui ME, Cirilo AG. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation[J]. Field Crops Res, 2001, 71(3): 183-193.
doi: 10.1016/S0378-4290(01)00158-7 URL |
[51] |
Postma JA, Hecht VL, Hikosaka K, et al. Dividing the pie: a quantitative review on plant density responses[J]. Plant Cell Environ, 2021, 44(4): 1072-1094.
doi: 10.1111/pce.v44.4 URL |
[52] |
Cao YJ, Wang LC, Gu WR, et al. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density[J]. J Integr Agric, 2021, 20(2): 494-510.
doi: 10.1016/S2095-3119(20)63378-0 URL |
[53] |
Huang SB, Gao YB, Li YB, et al. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley[J]. Crop J, 2017, 5(1): 52-62.
doi: 10.1016/j.cj.2016.06.018 |
[54] | 王志刚, 梁红伟, 余少波, 等. 玉米弱势粒库特征及其调控机理研究进展[J]. 作物杂志, 2015(2): 7-11. |
Wang ZG, Liang HW, Yu SB, et al. Review on sink traits and regulation mechanism of inferior kernels of maize[J]. Crops, 2015(2): 7-11. | |
[55] | Rizzo G, Monzon JP, Tenorio FA, et al. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments[J]. Proc Natl Acad Sci USA, 2022, 119(4): e2113629119. |
[56] |
Liu WM, Hou P, Liu GZ, et al. Contribution of total dry matter and harvest index to maize grain yield—a multisource data analysis[J]. Food Energy Secur, 2020, 9(4): e256.
doi: 10.1002/fes3.v9.4 URL |
[57] |
Liu GZ, Yang HS, Xie RZ, et al. Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China[J]. Field Crops Res, 2021, 270: 108223.
doi: 10.1016/j.fcr.2021.108223 URL |
[58] |
Mueller ND, Gerber JS, Johnston M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490(7419): 254-257.
doi: 10.1038/nature11420 |
[59] |
Ruffo ML, Gentry LF, Henninger AS, et al. Evaluating management factor contributions to reduce corn yield gaps[J]. Agron J, 2015, 107(2): 495-505.
doi: 10.2134/agronj14.0355 URL |
[60] |
Winans ET, Beyrer TA, Below FE. Managing density stress to close the maize yield gap[J]. Front Plant Sci, 2021, 12: 767465.
doi: 10.3389/fpls.2021.767465 URL |
[61] |
Tollenaar M, Lee EA. Yield potential, yield stability and stress tolerance in maize[J]. Field Crops Res, 2002, 75(2/3): 161-169.
doi: 10.1016/S0378-4290(02)00024-2 URL |
[62] | 袁静超, 刘剑钊, 梁尧, 等. 东北中部春玉米超高产群体养分管理模式的研究与验证[J]. 植物营养与肥料学报, 2020, 26(9): 1669-1680. |
Yuan JC, Liu JZ, Liang Y, et al. Study and demonstration of superhigh yield nutrient managemnt for maize production in the middle area of northeast China[J]. J Plant Nutr Fertil, 2020, 26(9): 1669-1680. | |
[63] | 黄振喜. 超高产夏玉米光合与养分生理特性研究[D]. 泰安: 山东农业大学, 2007. |
Huang ZX. Studies on photosynthetic and nutrient physiological characteristics of super-high yield summer maize hybrids[D]. Tai'an: Shandong Agricultural University, 2007. | |
[64] | 王永军. 超高产夏玉米群体质量与个体生理功能研究[D]. 泰安: 山东农业大学, 2008. |
Wang YJ. Study on population quality and individual physiology function of super high-yielding maize(Zea mays L.)[D]. Tai'an: Shandong Agricultural University, 2008. | |
[65] | 杨吉顺, 高辉远, 刘鹏, 等. 种植密度和行距配置对超高产夏玉米群体光合特性的影响[J]. 作物学报, 2010, 36(7): 1226-1233. |
Yang JS, Gao HY, Liu P, et al. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn[J]. Acta Agron Sin, 2010, 36(7): 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226 URL |
|
[66] |
景立权, 赵福成, 刘萍, 等. 施氮对超高产夏玉米干物质及光合特性的影响[J]. 核农学报, 2014, 28(2): 317-326.
doi: 10.11869/j.issn.100-8551.2014.02.0317 |
Jing LQ, Zhao FC, Liu P, et al. Effects of nitrogen treatments on dry matter production and photosynthetic characteristics of summer maize(Zea mays L.) under super-high yield conditions[J]. Acta Agric Nucleatae Sin, 2014, 28(2): 317-326. | |
[67] |
Smith P, Martino D, Cai ZC, et al. Greenhouse gas mitigation in agriculture[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1492): 789-813.
doi: 10.1098/rstb.2007.2184 URL |
[68] |
Wang QR, Liu RM, Zhou F, et al. A declining trend in China's future cropland-N2O emissions due to reduced cropland area[J]. Environ Sci Technol, 2021, 55(21): 14546-14555.
doi: 10.1021/acs.est.1c03612 URL |
[69] |
Wang W, Koslowski F, Nayak DR, et al. Greenhouse gas mitigation in Chinese agriculture: distinguishing technical and economic potentials[J]. Glob Environ Change, 2014, 26: 53-62.
doi: 10.1016/j.gloenvcha.2014.03.008 URL |
[70] |
Zhang GQ, Liu CW, Xiao CH, et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China[J]. Field Crops Res, 2017, 211: 137-146.
doi: 10.1016/j.fcr.2017.05.026 URL |
[71] |
Shen YJ, Li S, Chen YN, et al. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989-2010[J]. Agric Water Manag, 2013, 128: 55-64.
doi: 10.1016/j.agwat.2013.06.014 URL |
[72] | 黄峰, 杜太生, 王素芬, 等. 华北地区农业水资源现状和未来保障研究[J]. 中国工程科学, 2019, 21(5): 28-37. |
Huang F, Du TS, Wang SF, et al. Current situation and future security of agricultural water resources in North China[J]. Strateg Study CAE, 2019, 21(5): 28-37. | |
[73] |
Grafton RQ, Williams J, Jiang QA. Possible pathways and tensions in the food and water nexus[J]. Earth's Future, 2017, 5(5): 449-462.
doi: 10.1002/eft2.2017.5.issue-5 URL |
[74] |
Bassetti P, Westgate ME. Water deficit affects receptivity of maize silks[J]. Crop Sci, 1993, 33(2): 279.
doi: 10.2135/cropsci1993.0011183X003300020013x URL |
[75] |
Çakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn[J]. Field Crops Res, 2004, 89(1): 1-16.
doi: 10.1016/j.fcr.2004.01.005 URL |
[76] |
Hassanli AM, Ali Ebrahimizadeh M, Beecham S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region[J]. Agric Water Manag, 2009, 96(1): 93-99.
doi: 10.1016/j.agwat.2008.07.004 URL |
[77] |
Payero JO, Tarkalson DD, Irmak S, et al. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass[J]. Agric Water Manag, 2009, 96(10): 1387-1397.
doi: 10.1016/j.agwat.2009.03.022 URL |
[78] |
Tao ZQ, Li CF, Li JJ, et al. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley[J]. Crop J, 2015, 3(5): 445-450.
doi: 10.1016/j.cj.2015.08.001 |
[79] |
Cai T, Zhang C, Huang Y, et al. Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize(Zea mays L.) in the Loess Plateau of China[J]. Plant Soil Environ, 2015, 61(6): 253-259.
doi: 10.17221/76/2015-PSE URL |
[80] |
Thies S, Joshi DR, Bruggeman SA, et al. Fertilizer timing affects nitrous oxide, carbon dioxide, and ammonia emissions from soil[J]. Soil Sci Soc Am J, 2020, 84(1): 115-130.
doi: 10.1002/saj2.v84.1 URL |
[81] | 李少昆, 王克如, 谢瑞芝, 等. 实施密植高产机械化生产实现玉米高产高效协同[J]. 作物杂志, 2016(4): 1-6. |
Li SK, Wang KR, Xie RZ, et al. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production[J]. Crops, 2016(4): 1-6. | |
[82] | 李少昆, 王克如, 杨小霞, 等. 玉米高产纪录田块技术与效益分析[J]. 作物杂志, 2017(6): 1-6. |
Li SK, Wang KR, Yang XX, et al. Technology and benefit analysis of high yield record field in maize[J]. Crops, 2017(6): 1-6. |
[1] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[2] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[3] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[4] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[5] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[6] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[7] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[8] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[9] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[10] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[11] | 解伟, 刘春明. 生物育种产业化面临的机遇与政策保障[J]. 生物技术通报, 2023, 39(1): 16-20. |
[12] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[13] | 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析[J]. 生物技术通报, 2023, 39(1): 31-39. |
[14] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[15] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||