生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 34-46.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0379
• 菌物功效及作用机制专题(专题主编:王迪 教授) • 上一篇 下一篇
熊心怡1,2(), 刘利平2, 冯杰2, 张劲松2, 李德顺2, 刘朋2(), 刘艳芳2()
收稿日期:
2024-04-21
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
刘朋,女,博士,助理研究员,研究方向:食用菌功能活性物质;E-mail: liupeng@saas.sh.cn;作者简介:
熊心怡,女,硕士研究生,研究方向:食用菌营养评价与功能;E-mail: xxinyi1030@163.com
基金资助:
XIONG Xin-yi1,2(), LIU Li-ping2, FENG Jie2, ZHANG Jin-song2, LI De-shun2, LIU Peng2(), LIU Yan-fang2()
Received:
2024-04-21
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 探究蛹虫草(Cordyceps militaris)提取物对高尿酸血症模型大鼠的降尿酸(uric acid,UA)作用及其机制。【方法】 测定蛹虫草提取物总糖、还原糖、多糖、蛋白质和多酚物质含量,基于灌胃氧嗪酸钾联合酵母膏饲养建立高尿酸血症大鼠模型,通过对大鼠的血清UA水平、肾功能、氧化应激和炎症以及肠道微生物组成变化等测定以评价蛹虫草提取物对高尿酸血症大鼠的影响作用及其机制。【结果】 蛹虫草提取物含有35.86%多糖、27.05%蛋白质及0.21%的酚类物质。动物实验结果表明,蛹虫草提取物降低高尿酸血症大鼠血清的UA水平,其中0.5 g/(kg·d)的蛹虫草提取物效果最佳,可使UA水平从281.62 μmol/L降至93.27 μmol/L,抑制率为66.88%,同时可抑制高尿酸血症大鼠肾脏组织的氧化应激和炎症反应。分子机制研究表明,蛹虫草提取物可以下调高尿酸血症大鼠肾脏组织中尿酸盐阴离子转运蛋白(uric acid transporter 1,URAT1)、葡萄糖转运蛋白9(glucose transporter 9,GLUT9)的表达水平;上调有机阴离子转运蛋白1(organic anion transporter 1,OAT1)和三磷酸腺苷结合盒转运蛋白G2(ATP binding cassette subfamily G member 2,ABCG2)的表达水平。蛹虫草提取物能显著抑制肝脏组织中的黄嘌呤氧化酶活力。此外,蛹虫草提取物能够提升高尿酸血症大鼠肠道微生物的多样性,维持其肠道微生态平衡。【结论】 蛹虫草提取物具有良好的抗高尿酸血症的作用,可能与调节尿酸转运蛋白表达水平和抑制黄嘌呤氧化酶活力等有关。
熊心怡, 刘利平, 冯杰, 张劲松, 李德顺, 刘朋, 刘艳芳. 蛹虫草提取物对高尿酸血症大鼠的降尿酸作用及机制[J]. 生物技术通报, 2024, 40(11): 34-46.
XIONG Xin-yi, LIU Li-ping, FENG Jie, ZHANG Jin-song, LI De-shun, LIU Peng, LIU Yan-fang. Effect and Mechanism of Cordyceps militaris Extract on Lowering Uric Acid in Hyperuricemia Rats[J]. Biotechnology Bulletin, 2024, 40(11): 34-46.
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
URAT1 | F: GCTACCAGAATCGGCACGCT |
R: CACCGGGAAGTCCACAATCC | |
GLUT9 | F: GAGATGCTCATTGTGGGACG |
R: GTGCTACTTCGTCCTCGGT | |
ABCG2 | F: GTAGGTCGGTGTGCGAGTCA |
R: AACCAGTTGTGGGCTCATCC | |
OAT1 | F: GGCACCTTGATTGGCTATGT |
R: CCACAGCATGGAGAGACAGA | |
TNF-α | F: GCGTGTTCATCCGTTCTCTACC |
R: TACTTCAGCGTCTCGTGTGTTTCT | |
IL-6 | F: AGTTGCCTTCTTGGGACTGATGT |
R: GGTCTGTTGTGGGTGGTATCCTC | |
β-actin | F: GCAGGAGTACGATGAGTCCG |
R: ACGCAGCTCAGTAACAGTCC |
表1 用于RT-qPCR目的基因的引物
Table 1 Primers for RT-qPCR target genes
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
URAT1 | F: GCTACCAGAATCGGCACGCT |
R: CACCGGGAAGTCCACAATCC | |
GLUT9 | F: GAGATGCTCATTGTGGGACG |
R: GTGCTACTTCGTCCTCGGT | |
ABCG2 | F: GTAGGTCGGTGTGCGAGTCA |
R: AACCAGTTGTGGGCTCATCC | |
OAT1 | F: GGCACCTTGATTGGCTATGT |
R: CCACAGCATGGAGAGACAGA | |
TNF-α | F: GCGTGTTCATCCGTTCTCTACC |
R: TACTTCAGCGTCTCGTGTGTTTCT | |
IL-6 | F: AGTTGCCTTCTTGGGACTGATGT |
R: GGTCTGTTGTGGGTGGTATCCTC | |
β-actin | F: GCAGGAGTACGATGAGTCCG |
R: ACGCAGCTCAGTAACAGTCC |
氨基酸成分 Amino acid component | 含量 Content/% | 氨基酸成分 Amino acid component | 含量 Content/% | 核苷类成分 Nucleosides component | 含量 Content/% |
---|---|---|---|---|---|
L-组氨酸 | 0.16 | L-脯氨酸 | 0.41 | 胞嘧啶 | 0.01 |
L-精氨酸 | 0.94 | L-鸟氨酸 | 2.31 | 胞苷 | 0.03 |
L-天冬酰胺 | 0.25 | D-2-氨基丁酸 | 0.02 | 鸟嘌呤 | 0.02 |
L-谷氨酰胺 | 0.01 | L-赖氨酸 | 1.08 | 腺嘌呤 | 0.03 |
L-丝氨酸 | 0.59 | L-酪氨酸 | 0.34 | 尿苷 | 0.41 |
L-甘氨酸 | 0.14 | L-甲硫氨酸 | 0.09 | 胸腺嘧啶 | 0.04 |
L-天冬氨酸 | 0.68 | L-缬氨酸 | 0.64 | 肌苷 | 0.06 |
L-瓜氨酸 | 0.02 | L-异亮氨酸 | 0.34 | 鸟苷 | 0.21 |
L-谷氨酸 | 1.92 | L-亮氨酸 | 0.65 | 胸苷 | 0.02 |
L-苏氨酸 | 0.76 | L-苯丙氨酸 | 0.28 | 腺苷 | 0.34 |
L-丙氨酸 | 1.57 | L-色氨酸 | 0.10 | 虫草素 | 0.83 |
γ-氨基丁酸 | 0.25 | N6-(2-羟乙基)腺苷 | 0.54 |
表2 蛹虫草提取物的氨基酸和核苷类成分分析
Table 2 Analysis of amino acids and nucleosides components in C. militaris extract
氨基酸成分 Amino acid component | 含量 Content/% | 氨基酸成分 Amino acid component | 含量 Content/% | 核苷类成分 Nucleosides component | 含量 Content/% |
---|---|---|---|---|---|
L-组氨酸 | 0.16 | L-脯氨酸 | 0.41 | 胞嘧啶 | 0.01 |
L-精氨酸 | 0.94 | L-鸟氨酸 | 2.31 | 胞苷 | 0.03 |
L-天冬酰胺 | 0.25 | D-2-氨基丁酸 | 0.02 | 鸟嘌呤 | 0.02 |
L-谷氨酰胺 | 0.01 | L-赖氨酸 | 1.08 | 腺嘌呤 | 0.03 |
L-丝氨酸 | 0.59 | L-酪氨酸 | 0.34 | 尿苷 | 0.41 |
L-甘氨酸 | 0.14 | L-甲硫氨酸 | 0.09 | 胸腺嘧啶 | 0.04 |
L-天冬氨酸 | 0.68 | L-缬氨酸 | 0.64 | 肌苷 | 0.06 |
L-瓜氨酸 | 0.02 | L-异亮氨酸 | 0.34 | 鸟苷 | 0.21 |
L-谷氨酸 | 1.92 | L-亮氨酸 | 0.65 | 胸苷 | 0.02 |
L-苏氨酸 | 0.76 | L-苯丙氨酸 | 0.28 | 腺苷 | 0.34 |
L-丙氨酸 | 1.57 | L-色氨酸 | 0.10 | 虫草素 | 0.83 |
γ-氨基丁酸 | 0.25 | N6-(2-羟乙基)腺苷 | 0.54 |
图2 蛹虫草提取物对高尿酸血症大鼠肾功能损伤的影响 A:血清尿酸水平;B:血清尿素氮浓度;C:血清肌酐浓度;D:肾脏胶原容积率;E:肾脏HE染色切片;F:肾脏Masson染色切片。与CTL组相比,###:P<0.001;与MC组相比,**:P<0.01,***:P<0.001。比例尺:100 μm
Fig. 2 Effects of C. militaris extract on renal function and renal pathological injury in hyperuricemia rats A: Serum uric acid level; B: serum urea nitrogen concentration; C: serum creatinine concentration; D: renal fibrotic area; E: HE staining of kidney; F: masson staining of kidney. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
图3 蛹虫草提取物对高尿酸血症大鼠肾脏氧化应激的影响 A:肾脏中GSH含量;B:肾脏中MDA含量;C:肾脏T-AOC。与CTL组相比,#:P<0.05;与MC组相比,**:P<0.01,***:P<0.001
Fig. 3 Effects of C. militaris extract on renal oxidative stress in hyperuricemia rats A: Renal GSH content; B: renal MDA content; C: renal T-AOC. Compared with CTL group, #: P<0.05;compared with MC group, **: P<0.01, ***: P<0.001
图4 蛹虫草提取物对高尿酸血症大鼠肾脏炎症的影响 A:肾脏CD68免疫组化切片;B:肾脏NLRP3的免疫组化切片;C:肾脏IL-1β免疫组化切片;D:CD68阳性表达率;E:IL-6 mRNA相对表达水平;F:TNF-α mRNA相对表达水平;G:NLRP3阳性表达率;H:IL-1β阳性表达率。与CTL组相比,###:P<0.001;与MC组相比,**:P<0.01,***:P<0.001,比例尺:100 μm
Fig. 4 Effects of C. militaris extract on renal inflammation in hyperuricemia rats A: IHC staining of CD68; B: IHC staining of NLRP3; C: IHC staining of IL-1β; D: positive area of CD68; E: relative mRNA levels of IL-6; F: relative mRNA levels of TNF-α; G: positive area of NLRP3; H: positive area of IL-1β. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
图5 蛹虫草提取物对高尿酸血症大鼠肾脏尿酸转运蛋白的影响 A:肾脏URAT1的免疫组化切片;B:肾脏OAT1免疫组化切片;C:URAT1阳性表达率;D:URAT1mRNA的表达水平;E:GLUT9 mRNA的表达水平;F:OAT1阳性表达率;G:OAT1 mRNA的表达水平;H:ABCG2 mRNA的表达水平。与CTL组相比,###:P<0.001;与MC组相比,**:P<0.01,***:P<0.001,比例尺:100 μm
Fig. 5 Effects of C. militaris extract on renal uric acid transporter in hyperuricemia rats A: IHC staining of URAT1; B: IHC staining of OAT1; C: positive area of URAT1; D: relative mRNA levels of URAT1; E: relative mRNA levels of GLUT9; F: positive area of OAT1; G: relative mRNA levels of OAT1; H: relative mRNA levels of ABCG2. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
图6 蛹虫草提取物对高尿酸血症大鼠XOD活性和肝脏病理学损伤的影响 A:肝脏XOD活力;B:肝脏HE染色切片。与CTL组相比,###:P<0.001;与MC组相比,*:P<0.05,**:P<0.01,***:P<0.001,比例尺:100 μm
Fig. 6 Effects of C. militaris extract on XOD activity and liver pathological injury in hyperuricemia rats A: XOD activity in kidney; B: HE staining of kidney. Compared with CTL group, ###: P<0.001;compared with MC group, *: P<0.05, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
[1] | 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019)[J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13. |
Chinese Society of Endocrinology. Guideline for the diagnosis and management of hyperuricemia and gout in China(2019)[J]. Chin J Endocrinol Metab, 2020, 36(1): 1-13. | |
[2] | Yip K, Cohen RE, Pillinger MH. Asymptomatic hyperuricemia: is it really asymptomatic?[J]. Curr Opin Rheumatol, 2020, 32(1): 71-79. |
[3] | 周启蒙, 赵晓悦, 梁宇, 等. 治疗高尿酸血症相关药物研究新进展[J]. 中国新药杂志, 2021, 30(10): 929-936. |
Zhou QM, Zhao XY, Liang Y, et al. New progress in research on drugs for treatment of hyperuricemia[J]. Chin J N Drugs, 2021, 30(10): 929-936. | |
[4] | Yang BD, Xin ML, Liang SF, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds[J]. Front Pharmacol, 2022, 13: 1026246. |
[5] | Jędrejko KJ, Lazur J, Muszyńska B. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity[J]. Foods, 2021, 10(11): 2634. |
[6] | Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms[J]. Microorganisms, 2022, 10(2): 405. |
[7] | Yong TQ, Chen SD, Xie YZ, et al. Cordycepin, a characteristic bioactive constituent in Cordyceps militaris, ameliorates hyperuricemia through URAT1 in hyperuricemic mice[J]. Front Microbiol, 2018, 9: 58. |
[8] | Yong TQ, Zhang ML, Chen DL, et al. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine[J]. J Ethnopharmacol, 2016, 194: 403-411. |
[9] | 刘艳芳, 高坤, 冯杰, 等. 酿酒酵母发酵降解灵芝胞外多糖组分分析及活性研究[J]. 菌物学报, 2020, 39(2): 372-380. |
Liu YF, Gao K, Feng J, et al. Analysis and activity of polysaccharide from Ganoderma lucidum by fermentation of Saccharomyces cerevisiae[J]. Mycosystema, 2020, 39(2): 372-380. | |
[10] | 李娜, 唐传红, 刘艳芳, 等. 深层发酵用高产灵芝胞内多糖菌株的筛选[J]. 食用菌学报, 2021, 28(3): 63-71. |
Li N, Tang CH, Liu YF, et al. Screening of Ganoderma lucidum strains for high intracellular polysaccharide yield in submerged fermentation[J]. Acta Edulis Fungi, 2021, 28(3): 63-71. | |
[11] | 宋俊英. 茶薪菇总糖、还原糖和多糖的测定[J]. 中草药, 2006, 37(9): 1421-1422. |
Song JY. Determination of total sugar, reducing sugar and polysaccharide in Agrocybe chaxingu[J]. Chin Tradit Herb Drugs, 2006, 37(9): 1421-1422. | |
[12] | 孙梦雪, 倪立颖, 黄裕鸿, 等. 蒸汽爆破处理对金针菇菇脚水提物抗氧化及抗炎活性的影响[J]. 食品工业科技, 2023, 44(17): 91-99. |
Sun MX, Ni LY, Huang YH, et al. Effects of steam explosion on antioxidant and anti-inflammatory activities of water extracts of Flammulina velutipes stembase[J]. Sci Technol Food Ind, 2023, 44(17): 91-99. | |
[13] | Bao YL, Boeren S, Ertbjerg P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding[J]. Meat Sci, 2018, 135: 102-108. |
[14] | 平志豪, 唐庆九, 王金艳, 等. 大孔吸附树脂富集香菇中核苷类成分的工艺优化[J]. 食用菌学报, 2021, 28(5): 79-86. |
Ping ZH, Tang QJ, Wang JY, et al. Process optimization for enriching nucleosides in Lentinula edodes by macroporous resin[J]. Acta Edulis Fungi, 2021, 28(5): 79-86. | |
[15] | 王丹, 李河, 张志军, 等. 紫苏籽粕蛋白糖基化产物结构及功能特性[J]. 浙江大学学报: 农业与生命科学版, 2023, 49(4): 557-565. |
Wang D, Li H, Zhang ZJ, et al. Structural and functional properties of the glycosylated products of perilla seed meal proteins[J]. J Zhejiang Univ Agric Life Sci, 2023, 49(4): 557-565. | |
[16] | Guo MJ, Wu FH, Hao GG, et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Front Immunol, 2017, 8: 354. |
[17] | Kim GH, Jun JB. Altered serum uric acid levels in kidney disorders[J]. Life, 2022, 12(11): 1891. |
[18] | Lv SM, Zhang MQ, Chen JS, et al. Study on the anti-hyperuricemic bioactivity and chemical components of Sterculiae lychnophorae Semen[J]. J Funct Foods, 2022, 95: 105173. |
[19] | Yang Y, Wang HN, Kouadir M, et al. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors[J]. Cell Death Dis, 2019, 10(2): 128. |
[20] | Kurajoh M, Fukumoto S, Yoshida S, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry[J]. Sci Rep, 2021, 11(1): 7378. |
[21] | Liu YL, Gong ST, Li KJ, et al. Coptisine protects against hyperuricemic nephropathy through alleviating inflammation, oxidative stress and mitochondrial apoptosis via PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2022, 156: 113941. |
[22] | Bhatnagar V, Richard EL, Wu W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling[J]. Clin Kidney J, 2016, 9(3): 444-453. |
[23] | Wang ZL, Li YC, Liao WH, et al. Gut microbiota remodeling: a promising therapeutic strategy to confront hyperuricemia and gout[J]. Front Cell Infect Microbiol, 2022, 12: 935723. |
[24] | Chien CY, Chien YJ, Lin YH, et al. Supplementation of Lactobacillus plantarum(TCI227)prevented potassium-oxonate-induced hyperuricemia in rats[J]. Nutrients, 2022, 14(22): 4832. |
[25] | 孙雪微, 赵伟, 罗进城, 等. 叶酸调控对高尿酸血症大鼠肠道微生物的影响[J]. 微生物学杂志, 2022, 42(2): 65-72. |
Sun XW, Zhao W, Luo JC, et al. Effect of folic acid on intestinal duct microorganisms in rats with hyperuricemia[J]. J Microbiol, 2022, 42(2): 65-72. | |
[26] | 何新超. 鼠曲草萃取物对高尿酸血症大鼠的影响机制探究及固体饮料的研制[D]. 南昌: 南昌大学, 2023. |
He XC. Study on the mechanism of the effect of the extract of Rodent on hyperuricemia rats and the development of solid beverage[D]. Nanchang: Nanchang University, 2023. | |
[27] | Wei BQ, Ren PF, Xue CH, et al. Guluronate oligosaccharides exerts beneficial effects on hyperuricemia and regulation of gut microbiota in mice[J]. Food Biosci, 2023, 54: 102855. |
[28] | Sun YG, Zhang SS, Nie QX, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis[J]. Crit Rev Food Sci Nutr, 2023, 63(33): 12073-12088. |
[29] | 杨莹, 韩宇, 黄锦坚, 等. 肠道菌群代谢物参与高尿酸血症的病理机制[J]. 临床与病理杂志, 2023, 43(9): 1631-1641. |
Yang Y, Han Y, Huang JJ, et al. Pathological mechanisms of gut microbiota metabolites in hyperuricemia[J]. J Clin Pathol Res, 2023, 43(9): 1631-1641. | |
[30] | Wang ZY, Zhang ZX, Lu CY, et al. Effects of Sporisorium reiliana polysaccharides and Phoenix dactylifera monosaccharides on the gut microbiota and serum metabolism in mice with fructose-induced hyperuricemia[J]. Arch Microbiol, 2022, 204(7): 436. |
[31] | Liu JY, Feng CP, Li X, et al. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice[J]. Int J Biol Macromol, 2016, 86: 594-598. |
[32] | Yu RM, Song LY, Zhao Y, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris[J]. Fitoterapia, 2004, 75(5): 465-472. |
[33] | Lin SM, Meng J, Li F, et al. Ganoderma lucidum polysaccharide peptide alleviates hyperuricemia by regulating adenosine deaminase and urate transporters[J]. Food Funct, 2022, 13(24): 12619-12631. |
[1] | 刘艳, 孙静, 葛良鹏, 马继登, 张进威. 肠道微生物对宿主适应性免疫的影响[J]. 生物技术通报, 2024, 40(1): 113-126. |
[2] | 邱小宇, 刘作华, 齐仁立. 无菌猪和普通猪早期脂肪发育及脂肪组织基因转录表达的差异[J]. 生物技术通报, 2021, 37(5): 56-66. |
[3] | 谢果珍, 唐圆, 吴仪, 黄莉莉, 谭周进. 七味白术散总苷对菌群失调腹泻小鼠肠道微生物及酶活性的影响[J]. 生物技术通报, 2021, 37(12): 124-131. |
[4] | 陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226. |
[5] | 郭玉峰, 汪乔, 王祥锋, 周婷, 杨晓君, 王庆佶, 王丽. 泰山野生蛹虫草优良菌株的筛选[J]. 生物技术通报, 2021, 37(11): 125-133. |
[6] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[7] | 赵旭, 徐群, 侯彦茹, 李明宇, 张雅宁, 汪海. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235. |
[8] | 王晶, 戴东, 武书庚, 张海军, 齐广海. 鸡肠道微生物演替与早期定植的研究进展[J]. 生物技术通报, 2020, 36(2): 1-8. |
[9] | 黄海敏, 蓝秀万, 吴耀生. 肠道微生物与性激素相关疾病研究进展[J]. 生物技术通报, 2020, 36(2): 77-82. |
[10] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[11] | 刘建兵, 戚梦, 杜苑如, 傅俊生, 胡开辉. 拆分网络分析22株蛹虫草亲缘关系及高产虫草素菌株初筛[J]. 生物技术通报, 2018, 34(4): 133-138. |
[12] | 侯若琳, 刘鑫, 项凯凯, 陈磊, 郑明锋, 傅俊生. 响应面法优化蛹虫草蛋白超声波辅助提取工艺及其营养评价[J]. 生物技术通报, 2018, 34(11): 198-204. |
[13] | 杜若曦, 郭明璋, 谢子鑫, 贺晓云, 黄昆仑, 许文涛. 合成生物学在改善肠道健康状态中的应用与展望[J]. 生物技术通报, 2018, 34(1): 49-59. |
[14] | 朱巍巍,李莉,陈飞,李杨,王艳华,包永明. 基因组DNA去甲基化法改良蛹虫草菌株高产虫草素及性状稳定性评价[J]. 生物技术通报, 2016, 32(12): 47-52. |
[15] | 周梅仙,周业飞. 蛹虫草基质多糖对鸡传染性支气管炎灭活疫苗的免疫佐剂作用[J]. 生物技术通报, 2016, 32(12): 108-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||