生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 58-67.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0677
• 菌物功效及作用机制专题(专题主编:王迪 教授) • 上一篇 下一篇
收稿日期:
2024-07-16
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
王艳珍,女,博士,副教授,研究方向:药理药效学; E-mail: wyz12@mails.jlu.edu.cn作者简介:
叶卓妍,女,研究方向:药学; E-mail: yeyeye0823@163.com
基金资助:
YE Zhuo-yan(), ZHOU Jia-qi, LIN Dan-yuan, SUN He-nan, WANG Yan-zhen()
Received:
2024-07-16
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 优化杨树桑黄多糖(Sanghuongporus vaninii polysaccharides, SVP)提取工艺,探讨SVP的抑菌机制,为天然抑菌剂的开发提供参考。【方法】 在单因素实验的基础上,利用响应面分析法优化多糖水提醇沉法提取工艺,提高多糖提取率;通过最小抑菌浓度、生长曲线和酶活性等的测定,研究SVP对大肠杆菌和金黄色葡萄球菌的抑菌活性。【结果】 在浸提温度86℃、时间1.6 h、料液比1∶24 g/mL时,多糖的提取率为4.07%;多糖对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度分别为2.000 mg/mL和1.500 mg/mL。与阴性对照组相比,大肠杆菌和金黄色葡萄球菌的胞外碱性磷酸酶(alkaline phosphatase, AKP)活性分别升高3.7倍(P<0.05)和2.6倍(P<0.05)、β-半乳糖苷酶的活性分别升高6.2%(P<0.01)和7.3%(P<0.01)、ΔOD 260nm分别增加了60%(P<0.01)和1.2倍(P<0.01)、胞内Na+/K+-ATPase的酶活性分别下降28.9%(P<0.001)和34.8%(P<0.001)、Ca2+-ATPase的酶活性分别下降43.2%(P<0.001)和35.6%(P<0.001)、ATP酶的活性分别降低了20.1%(P<0.001)和34.6%(P<0.001)、苹果酸脱氢酶(malate dehydrogenase, MDH)活性分别降低了23.5%(P<0.001)和28.7%(P<0.0001)、琥珀酸脱氢酶(succinate dehydrogenase, SDH)活性分别降低了17.9%(P<0.01)和13.8%(P<0.01)。【结论】 响应面优化后,SVP的实际提取率比预测提取率高5.71%,同时SVP对大肠杆菌和金黄色葡萄球菌有较强的抑制作用,作用机制可能与破坏细菌细胞膜、抑制能量代谢酶等的活性相关。
叶卓妍, 周家淇, 林丹媛, 孙赫男, 王艳珍. 杨树桑黄多糖提取条件优化及其抑菌活性研究[J]. 生物技术通报, 2024, 40(11): 58-67.
YE Zhuo-yan, ZHOU Jia-qi, LIN Dan-yuan, SUN He-nan, WANG Yan-zhen. Study on the Optimization of Extraction Conditions and Antibacterial Activities of Polysaccharides from Sanghuongporus vaninii[J]. Biotechnology Bulletin, 2024, 40(11): 58-67.
图1 不同条件对SVP提取率的影响 A:浸提温度;B:浸提时间;C:料液比
Fig. 1 Effects of different conditions on the extraction yield of SVP A: Extraction temperature. B: Extraction time. C: Material-liquid ratio
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 0 | 1 | |
A温度/℃ | 70 | 80 | 90 |
B时间/h | 1 | 2 | 3 |
C料液比/(g·mL-1) | 1∶10 | 1∶20 | 1∶30 |
表1 响应面三因素三水平试验设计
Table 1 Response surface three factor and three level experimental design
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 0 | 1 | |
A温度/℃ | 70 | 80 | 90 |
B时间/h | 1 | 2 | 3 |
C料液比/(g·mL-1) | 1∶10 | 1∶20 | 1∶30 |
序号 No. | 水平Level | 提取率Extraction yield/% | ||||
---|---|---|---|---|---|---|
A/℃ | B/h | C/(g·mL-1) | 实验Experiment | 预测Prediction | ||
1 | 90 | 2 | 1∶10 | 2.66 | 2.21 | |
2 | 80 | 3 | 1∶10 | 2.77 | 2.49 | |
3 | 90 | 2 | 1∶30 | 3.39 | 2.87 | |
4 | 80 | 2 | 1∶20 | 4.12 | 3.08 | |
5 | 90 | 1 | 1∶20 | 2.46 | 2.42 | |
6 | 70 | 2 | 1∶10 | 2.37 | 2.72 | |
7 | 70 | 3 | 1∶20 | 2.90 | 3.15 | |
8 | 80 | 2 | 1∶20 | 4.25 | 3.33 | |
9 | 80 | 2 | 1∶20 | 4.03 | 1.94 | |
10 | 80 | 1 | 1∶30 | 2.78 | 2.75 | |
11 | 80 | 1 | 1∶10 | 2.04 | 2.80 | |
12 | 70 | 2 | 1∶30 | 3.20 | 3.23 | |
13 | 90 | 3 | 1∶20 | 3.12 | 4.15 | |
14 | 70 | 1 | 1∶20 | 2.17 | 4.15 | |
15 | 80 | 2 | 1∶20 | 4.00 | 4.15 | |
16 | 80 | 2 | 1∶20 | 4.36 | 4.15 | |
17 | 80 | 3 | 1∶30 | 3.14 | 4.15 |
表2 响应面试验的方案及提取率
Table 2 Box-Behnken design
序号 No. | 水平Level | 提取率Extraction yield/% | ||||
---|---|---|---|---|---|---|
A/℃ | B/h | C/(g·mL-1) | 实验Experiment | 预测Prediction | ||
1 | 90 | 2 | 1∶10 | 2.66 | 2.21 | |
2 | 80 | 3 | 1∶10 | 2.77 | 2.49 | |
3 | 90 | 2 | 1∶30 | 3.39 | 2.87 | |
4 | 80 | 2 | 1∶20 | 4.12 | 3.08 | |
5 | 90 | 1 | 1∶20 | 2.46 | 2.42 | |
6 | 70 | 2 | 1∶10 | 2.37 | 2.72 | |
7 | 70 | 3 | 1∶20 | 2.90 | 3.15 | |
8 | 80 | 2 | 1∶20 | 4.25 | 3.33 | |
9 | 80 | 2 | 1∶20 | 4.03 | 1.94 | |
10 | 80 | 1 | 1∶30 | 2.78 | 2.75 | |
11 | 80 | 1 | 1∶10 | 2.04 | 2.80 | |
12 | 70 | 2 | 1∶30 | 3.20 | 3.23 | |
13 | 90 | 3 | 1∶20 | 3.12 | 4.15 | |
14 | 70 | 1 | 1∶20 | 2.17 | 4.15 | |
15 | 80 | 2 | 1∶20 | 4.00 | 4.15 | |
16 | 80 | 2 | 1∶20 | 4.36 | 4.15 | |
17 | 80 | 3 | 1∶30 | 3.14 | 4.15 |
方差来源Source | 平方和Sum of squares | 自由度df | 均方Square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 8.91 | 9 | 0.99 | 54.14 | < 0.0001 | *** |
A | 0.12 | 1 | 0.12 | 6.62 | 0.0369 | * |
B | 0.77 | 1 | 0.77 | 41.99 | 0.0003 | *** |
C | 0.89 | 1 | 0.89 | 48.82 | 0.0002 | *** |
AB | 0.00 | 1 | 0.00 | 0.08 | 0.7896 | |
AC | 0.00 | 1 | 0.00 | 0.19 | 0.6784 | |
BC | 0.04 | 1 | 0.04 | 1.93 | 0.2071 | |
A2 | 1.68 | 1 | 1.68 | 91.91 | < 0.0001 | *** |
B2 | 3.09 | 1 | 3.09 | 169.11 | < 0.0001 | *** |
C2 | 1.59 | 1 | 1.59 | 87.10 | < 0.0001 | *** |
残差 | 0.13 | 7 | 0.02 | |||
失拟项 | 0.04 | 3 | 0.01 | 0.54 | 0.6798 | |
纯误差 | 0.09 | 4 | 0.02 | - | - | |
总误差 | 9.04 | 16 | - | - | - |
表3 回归方程方差分析
Table 3 Results of analysis of variance(ANOVA)for a fitted regression equation
方差来源Source | 平方和Sum of squares | 自由度df | 均方Square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 8.91 | 9 | 0.99 | 54.14 | < 0.0001 | *** |
A | 0.12 | 1 | 0.12 | 6.62 | 0.0369 | * |
B | 0.77 | 1 | 0.77 | 41.99 | 0.0003 | *** |
C | 0.89 | 1 | 0.89 | 48.82 | 0.0002 | *** |
AB | 0.00 | 1 | 0.00 | 0.08 | 0.7896 | |
AC | 0.00 | 1 | 0.00 | 0.19 | 0.6784 | |
BC | 0.04 | 1 | 0.04 | 1.93 | 0.2071 | |
A2 | 1.68 | 1 | 1.68 | 91.91 | < 0.0001 | *** |
B2 | 3.09 | 1 | 3.09 | 169.11 | < 0.0001 | *** |
C2 | 1.59 | 1 | 1.59 | 87.10 | < 0.0001 | *** |
残差 | 0.13 | 7 | 0.02 | |||
失拟项 | 0.04 | 3 | 0.01 | 0.54 | 0.6798 | |
纯误差 | 0.09 | 4 | 0.02 | - | - | |
总误差 | 9.04 | 16 | - | - | - |
图2 多糖提取响应面图和等高线图 A:浸提时间和温度对多糖提取率的影响;B:料液比和浸提温度对多糖提取率的影响;C:料液比和浸提时间对多糖提取率的影响
Fig. 2 Response surface map and contour map of polysaccharides extraction A: The influence of extraction time and temperature on the extraction yield of polysaccharides. B: The influence of material-liquid ratio and extraction temperature on the extraction yield of polysaccharides. C: The influence of material-liquid ratio and extraction time on the extraction yield of polysaccharides
菌种Strain | 最小抑菌浓度MIC/(mg·mL-1) |
---|---|
E. coli | 2.000 |
S. aureus | 1.500 |
表4 SVP对大肠杆菌、金黄色葡萄球菌的MIC
Table 4 MIC of SVP against E. coli and S. aureus
菌种Strain | 最小抑菌浓度MIC/(mg·mL-1) |
---|---|
E. coli | 2.000 |
S. aureus | 1.500 |
图3 SVP对生长曲线的影响 A:大肠杆菌生长曲线;B:金黄色葡萄球菌生长曲线。***P<0.001 vs. 阴性对照组。
Fig. 3 Effects of SVP on the growth curve A:Growth curve of E. coli. B :Growth curve of S. aureus. ***P<0.001 vs. control group.
图4 SVP对大肠杆菌和金黄色葡萄球菌细胞壁和细胞膜酶活性的影响 A: AKP酶活性;B:β-半乳糖苷酶活性;C:Na+/K+-ATPase活性;D:Ca2+-ATPase活性。*P<0.05, **P<0.01, ***P<0.001 vs. 阴性对照组
Fig. 4 Effects of SVP on cell wall and membrane enzyme activities of E. coli and S. aureus A: AKP enzyme activity. B β-Galactosidase activity. C: Na+/K+-ATPase activity. D: Ca2+-ATPase activity. *P<0.05, **P<0.01, ***P<0.001 vs. control group
图5 SVP对大肠杆菌和金黄色葡萄球菌核酸泄露的影响 **P<0.01 vs. 阴性对照组
Fig. 5 Effects of SVP on the leakage of nucleic acid of E. coli and S. aureus **P<0.01 vs. control group
图6 SVP对大肠杆菌和金黄色葡萄球菌能量代谢酶活性的影响 A: ATPase活性;B: MDH酶活性;C: SDH酶活性。**P<0.01,***P<0.001 vs. 阴性对照组
Fig. 6 Effects of SVP on energy metabolism enzyme activities of E. coli and S. aureus A: ATPase activity; B MDH enzyme activity; C: SDH enzyme activity. **P<0.01, ***P<0.001 vs. control group
[1] | Huguet C, Bourjot M, Bellanger JM, et al. Screening for antibacterial activity of French mushrooms against pathogenic and multidrug resistant bacteria[J]. Appl Sci, 2022, 12(10): 5229. |
[2] | WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics[R]. GENEVA, Switzerland: World Health Organization, 2017. |
[3] | Hamers V, Huguet C, Bourjot M, et al. Antibacterial compounds from mushrooms: a lead to fight ESKAPEE pathogenic bacteria?[J]. Planta Med, 2021, 87(5): 351-367. |
[4] | Wu F, Zhou LW, Vlasák J, et al. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore[J]. Fungal Divers, 2022, 113(1): 1-192. |
[5] | 吴声华, 戴玉成. 药用真菌桑黄的种类解析[J]. 菌物学报, 2020, 39(5): 781-794. |
Wu SH, Dai YC. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema, 2020, 39(5): 781-794. | |
[6] | 包海鹰, 杨烁, 李庆杰, 等. “桑黄” 的本草补充考证[J]. 菌物研究, 2017, 15(4): 264-270. |
Bao HY, Yang S, Li QJ, et al. Supplementary textual research on “Sanghuang”[J]. J Fungal Res, 2017, 15(4): 264-270. | |
[7] | 国微, 邰志娟, 刘凤霞, 等. 长白山区桑黄资源及其产业现状[J]. 农业与技术, 2018, 38(23): 5-7. |
Guo W, Tai ZJ, Liu FX, et al. Phellinus igniarius resources and its industrial status in Changbai Mountain area[J]. Agric Technol, 2018, 38(23): 5-7. | |
[8] | 郝洁. 杨树桑黄子实体及其纯化多糖降血脂功效研究[D]. 长春: 吉林大学, 2024. |
Hao J. Study on hypolipidemic effect of poplar Phellinus igniarius fruitbody and its purified polysaccharide[D]. Changchun: Jilin University, 2024. | |
[9] | Zhang ZF, Song TT, Chen JF, et al. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method[J]. Front Nutr, 2022, 9: 1095556. |
[10] | Li JC, Chen ZX, Shi HM, et al. Ultrasound-assisted extraction and properties of polysaccharide from Ginkgo biloba leaves[J]. Ultrason Sonochem, 2023, 93: 106295. |
[11] | Wan XL, Jin X, Wu XM, et al. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii[J]. Carbohydr Polym, 2022, 276: 118798. |
[12] | Im KH, Baek SA, Choi J, et al. Antioxidant, anti-melanogenic and anti-wrinkle effects of Phellinus vaninii[J]. Mycobiology, 2019, 47(4): 494-505. |
[13] | Yin CM, Li YH, Li JT, et al. Gastrointestinal digestion, probiotic fermentation behaviors and immunomodulatory effects of polysaccharides from Sanghuangporus vaninii[J]. Int J Biol Macromol, 2022, 223(Pt A): 606-617. |
[14] | Liu JZ, Song JY, Gao FS, et al. Extraction, purification, and structural characterization of polysaccharides from Sanghuangporus vaninii with anti-inflammatory activity[J]. Molecules, 2023, 28(16): 6081. |
[15] | Adegbenu PS, Aboagye G, Amenya P, et al. Susceptibility of bacterial and fungal isolates to spices commonly used in Ghana[J]. Sci Afr, 2020, 9: e00530. |
[16] | Kong F, Cai X, Zhai S, et al. Possible mechanisms of the antimicrobial effects of polypeptide-enriched Gastrodia elata Blume extracts[J]. Mol Med Rep, 2019, 20(5): 4723-4730. |
[17] | Wang JY, Ma MM, Yang J, et al. In vitro antibacterial activity and mechanism of monocaprylin against Escherichia coli and Staphylococcus aureus[J]. J Food Prot, 2018, 81(12): 1988-1996. |
[18] | Shen SX, Zhang TH, Yuan Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Contr, 2015, 47: 196-202. |
[19] | Sun XH, Zhou TT, Wei CH, et al. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens[J]. Food Contr, 2018, 94: 155-161. |
[20] | Zhang HN, Jiang FC, Li LQ, et al. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: a review[J]. Int J Biol Macromol, 2022, 222(Pt B): 3108-3128. |
[21] | 徐艳, 王珈亿, 尹雄杰, 等. 桑黄多糖提取工艺的优化[J]. 延边大学医学学报, 2021, 44(4): 242-244. |
Xu Y, Wang JY, Yin XJ, et al. Optimization of extraction process of Phellinus linteus polysaccharide[J]. J Med Sci Yanbian Univ, 2021, 44(4): 242-244. | |
[22] | Chu HSS, Boyer R, Williams R, et al. Preliminary evaluation of inhibitory activity of medicinal mushroom extracts against pathogenic bacteria and spoilage yeasts[J]. LWT, 2021, 145: 111200. |
[23] | Wang YY, Ma HL, Ding ZC, et al. Three-phase partitioning for the direct extraction and separation of bioactive exopolysaccharides from the cultured broth of Phellinus baumii[J]. Int J Biol Macromol, 2019, 123: 201-209. |
[24] | Clericuzio M, Bivona M, Gamalero E, et al. A systematic study of the antibacterial activity of basidiomycota crude extracts[J]. Antibiotics(Basel), 2021, 10(11): 1424. |
[25] | Morel S, Vitou M, Masnou A, et al. Antibacterial activity of wild mushrooms from France[J]. Int J Med Mushrooms, 2021, 23(1): 79-89. |
[26] | Gao NB, Zhang WJ, Hu DJ, et al. Study on extraction, physicochemical properties, and bacterio-static activity of polysaccharides from Phellinus linteus[J]. Molecules, 2023, 28(13): 5102. |
[27] | Gargano ML, Balenzano G, Venturella G, et al. Nutritional contents and antimicrobial activity of the culinary-medicinal mushroom Leccinum scabrum[J]. Mycology, 2024,(4): 1-11. |
[28] | He N, Wang PQ, Wang PY, et al. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica(Linn)Lam[J]. BMC Complement Altern Med, 2018, 18(1): 261. |
[29] | 李婷, 杨舒然, 陈敏, 等. 姜厚朴水提物对大肠杆菌和金黄色葡萄球菌的抑菌机理研究[J]. 现代食品科技, 2016, 32(2): 84-92. |
Li T, Yang SR, Chen M, et al. Antibacterial mechanism of ginger mix-fried Magnolia bark extract against Escherichia coli and Staphylococcus aureus[J]. Mod Food Sci Technol, 2016, 32(2): 84-92. | |
[30] | 段雪娟, 韩雅莉, 刘泽璇, 等. 肉桂精油气相熏蒸金黄色葡萄球菌的抗菌机理[J]. 现代食品科技, 2021, 37(9): 50-58. |
Duan XJ, Han YL, Liu ZX, et al. Antibacterial mechanism of cinnamon essential oil vapor fumigation against Staphylococcus aureus[J]. Mod Food Sci Technol, 2021, 37(9): 50-58. |
[1] | 张亚亚, 李盼盼, 高惠惠, 贾晨波, 徐春燕. 基于根表真菌群落与病原菌鉴定探究‘宁杞5号’枸杞根腐病的发生机制[J]. 生物技术通报, 2024, 40(9): 238-248. |
[2] | 马小翔, 马泽源, 刘亚月, 周龙建, 和羿帆, 张翼. 仿突变生物合成调控对土曲霉C23-3次生代谢产物的影响[J]. 生物技术通报, 2024, 40(8): 275-287. |
[3] | 张梦菲, 余炼, 李菲, 李喆, 苏芯莹, 蓝彩碧, 朱虎, 秦莹. 响应面法优化暹罗芽孢杆菌产大环内酯的发酵培养条件[J]. 生物技术通报, 2024, 40(8): 299-308. |
[4] | 杨鹭, 袁源, 方志锴, 林如, 江红, 周剑. 一株链霉菌的鉴定及其产格尔德霉素的发酵工艺研究[J]. 生物技术通报, 2024, 40(6): 299-309. |
[5] | 苑海鹏, 叶云舒, 司皓, 纪秋研, 张玉红. 丛枝菌根真菌对植物逆境胁迫抗性及次生代谢产物合成的影响[J]. 生物技术通报, 2024, 40(6): 45-56. |
[6] | 张嘉华, 张慧梅, 马喜喜, 孙焱森, 李若冰, 李柠杏, 才学鹏, 乔军, 孟庆玲. 少孢节丛孢菌几丁质酶AO-492对线虫的降解作用研究[J]. 生物技术通报, 2024, 40(5): 261-268. |
[7] | 王佳玮, 李晨, 刘建利, 周世杰, 易嘉敏, 杨谨源, 康鹏. 内生真菌接种方式对青贮玉米幼苗生长的影响[J]. 生物技术通报, 2024, 40(4): 189-202. |
[8] | 常海霞, 李明源, 麦日艳古·亚生, 周茜, 王继莲. 产胞外多糖多功能促生菌的筛选鉴定及促生评价[J]. 生物技术通报, 2024, 40(3): 273-285. |
[9] | 康晓博, 张璟汐, 卢甜甜, 刘亚月, 周龙建, 张翼. 不同盐度培养下海洋真菌Aspergillus unguis DLEP2008001生物活性及次生代谢组变化[J]. 生物技术通报, 2024, 40(11): 296-311. |
[10] | 赵睿萌, 王梦雨, 吕国英, 宋婷婷, 张作法. 药用真菌桑黄中多酚类成分药用机理研究进展[J]. 生物技术通报, 2024, 40(11): 3-13. |
[11] | 余金岂, 邬柯奕, 陈正睿, 王婧涵, 张鑫, 王春月. 珊瑚状猴头菌多糖超声辅助提取工艺优化及抗结直肠癌活性研究[J]. 生物技术通报, 2024, 40(11): 78-87. |
[12] | 向霞, 朱恩恒, 韩楠玉. 三种主要真菌毒素及其毒素降解酶的研究进展[J]. 生物技术通报, 2024, 40(1): 45-56. |
[13] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[14] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[15] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||