生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 253-265.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0753
徐扬1(), 张瑞英2, 戴良香1, 张冠初1, 丁红1(), 张智猛1()
收稿日期:
2023-08-09
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
张智猛,男,博士,研究员,研究方向:花生高产抗逆栽培生理学;E-mail: qinhdao@163.com;作者简介:
徐扬,女,博士,副研究员,研究方向:花生逆境栽培与土壤改良;E-mail: xy52120092661@163.com
基金资助:
XU Yang1(), ZHANG Rui-ying2, DAI Liang-xiang1, ZHANG Guan-chu1, DING Hong1(), ZHANG Zhi-meng1()
Received:
2023-08-09
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】盐胁迫影响花生种子萌发和植株生长,阐明盐胁迫下适量施肥提高种子萌发率和花生产量的内在调控机制,并解析该过程与种子际土壤细菌菌群结构的关系,为通过改良种子际土壤微生物环境,提高花生出苗健苗率、耐盐抗逆性和花生生产能力提供理论和技术依据。【方法】以耐盐花生品种(花育25号,HY25)为试验材料,设置3个氮素水平0、90和180 kg/hm2,采用盆栽试验和高通量测序技术,阐明氮肥施用对盐胁迫下花生种子际微生物菌群结构、花生发芽出苗和产量的影响。【结果】施加氮肥可有效提高花生种子在盐胁迫下的发芽率和最终产量,并以施氮量90 kg/hm2最适。16S rRNA测序分析显示,种子际的土壤细菌以变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)及芽孢杆菌门(Gemmatimonadetes)等为优势菌门。在属水平上,盐胁迫虽然提高了有益菌属拟杆菌属(Bacteroides)的相对丰度,但同时导致有害的链球菌属(Streptococcus)增多,最终降低了有益菌属芽孢杆菌属(Bacillus)、鞘脂单胞菌属(Sphingomonas)和溶杆菌属(Lysobacter)的相对丰度。盐胁迫下施氮可以显著改善种子际的土壤微环境,提高有益菌属拟杆菌属、芽孢杆菌属、鞘脂单胞菌属的相对丰度,对土壤修复和地力提升有一定的帮助,同时还能增强花生抗逆性。【结论】盐胁迫下适量施氮可提高种子际有益菌属的相对丰度,从而提高花生种子的发芽率和耐盐性,最终促进盐胁迫下的花生增产。
徐扬, 张瑞英, 戴良香, 张冠初, 丁红, 张智猛. 盐胁迫下氮素对花生种子萌发和种子际细菌菌群结构的调控[J]. 生物技术通报, 2024, 40(2): 253-265.
XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress[J]. Biotechnology Bulletin, 2024, 40(2): 253-265.
图1 盐胁迫下不同氮肥施用对花生萌发的影响 CN:正常条件无氮处理;CM:正常条件施氮90 kg/hm2;CH:正常条件施氮180 kg/hm2;SN:盐胁迫下无氮处理;SM:盐胁迫下施氮90 kg/hm2;SH:盐胁迫下施氮180 kg/hm2。下同
Fig. 1 Effects of different nitrogen fertilizer applications on peanut germination under salt stress CN: No N-applied under normal condition; CM: 90 kg/hm2 N-applied under normal condition; CH: 180 kg/hm2 N-applied under normal condition; SN: no N-applied under salt stress; SM: 90 kg/hm2 N-applied under salt stress; SH: 180 kg/hm2 N-applied under salt stress. The same below
处理 Treatment | 编号缩写 Abbreviation | 单株荚果数 Number of pods per plant | 百果重 100 pods weight/g | 百仁重 100 seeds weight/g | 出米率 Kernel percentage/% |
---|---|---|---|---|---|
正常 Normal condition | CN | 20.84±0.30b | 190.21±0.42b | 77.13±0.45b | 68.19±0.77b |
CM | 22.87±0.54a | 206.22±0.66a | 82.97±0.67a | 72.63±0.36a | |
CH | 21.95±0.054a | 207.05±0.42a | 84.05±0.59a | 73.53±0.34a | |
盐胁迫 Salt stress | SN | 17.08±0.19c | 169.53±1.07d | 69.28±0.85d | 64.16±0.13c |
SM | 17.94±0.19c | 184.90±1.40c | 75.42±0.65c | 68.67±0.56b | |
SH | 17.48±0.12c | 185.74±0.85c | 75.44±0.63c | 68.93±0.27b |
表1 不同处理条件下花生产量构成因素统计
Table 1 Statistics of yield components of peanut under different treatments
处理 Treatment | 编号缩写 Abbreviation | 单株荚果数 Number of pods per plant | 百果重 100 pods weight/g | 百仁重 100 seeds weight/g | 出米率 Kernel percentage/% |
---|---|---|---|---|---|
正常 Normal condition | CN | 20.84±0.30b | 190.21±0.42b | 77.13±0.45b | 68.19±0.77b |
CM | 22.87±0.54a | 206.22±0.66a | 82.97±0.67a | 72.63±0.36a | |
CH | 21.95±0.054a | 207.05±0.42a | 84.05±0.59a | 73.53±0.34a | |
盐胁迫 Salt stress | SN | 17.08±0.19c | 169.53±1.07d | 69.28±0.85d | 64.16±0.13c |
SM | 17.94±0.19c | 184.90±1.40c | 75.42±0.65c | 68.67±0.56b | |
SH | 17.48±0.12c | 185.74±0.85c | 75.44±0.63c | 68.93±0.27b |
图2 α多样性分析 A:稀释性曲线;B:等级丰度曲线;C:物种累计曲线。CK:空白土壤;CNS:正常条件无氮处理种子际土壤;CMS:正常条件施氮90 kg/hm2种子际土壤;CHS:正常条件施氮180 kg/hm2种子际土壤;SNS:盐胁迫下无氮处理种子际土壤;SMS:盐胁迫下施氮90 kg/hm2种子际土壤;SHS:盐胁迫下施氮180 kg/hm2种子际土壤
Fig. 2 α diversity analysis A: Rarefaction curve. B: Rank abundance curve. C: Species accumulation curves. CK: Bulk soil; CNS: no N-applied spermosphere soil under normal condition; CMS: 90 kg/hm2 N-applied spermosphere soil under normal condition; CHS: 180 kg/hm2 N-applied spermosphere soil under normal condition; SNS: no N-applied spermosphere soil under salt stress; SMS: 90 kg/hm2 N-applied spermosphere soil under salt stress; SHS: 180 kg/hm2 N-applied spermosphere soil under salt stress
图3 β多样性分析 A:主坐标分析;B:样本层次聚类分析;C:ANOIMS相似性分析
Fig. 3 β diversity analysis A: Principal component analysis. B: Hierarchical clustering tree analysis. C: ANOIMS analysis
图4 物种组成及样本间差异比较 A:门水平物种组成百分比统计;B:纲水平物种组成百分比统计;C:目水平物种组成百分比统计;D:科水平物种组成百分比统计
Fig. 4 Comparison of species composition and differences between diverse groups A: Percentage of species composition at the phylum level. B: Percentage of species composition at the class level. C: Percentage of species composition at the order level. D: Percentage of species composition at the family level
图5 属水平物种组成及样本间差异比较 A:属水平物种组成百分比统计;B:热图分析
Fig. 5 Comparison of bacterial composition and differences between diverse groups at the genus level A: Percentage of bacterial composition at the genus level; B: heatmap analysis
图8 RDA分析 A:门水平细菌群落与环境因子RDA分析;B:属水平细菌群落与环境因子RDA分析
Fig. 8 Redundancy analysis A: RDA analysis of bacterial communities and environmental factors at phylum level. B: RDA analysis of bacterial communities and environmental factors at genus level
[1] |
史晓龙, 张智猛, 戴良香, 等. 外源施钙对盐胁迫下花生营养元素吸收与分配的影响[J]. 应用生态学报, 2018, 29(10): 3302-3310.
doi: 10.13287/j.1001-9332.201810.026 |
Shi XL, Zhang ZZ, Dai LX, et al. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress[J]. Chin J Appl Ecol, 2018, 29(10): 3302-3310. | |
[2] | 慈敦伟, 张智猛, 丁红, 等. 花生苗期耐盐性评价及耐盐指标筛选[J]. 生态学报, 2015, 35(3): 805-814. |
Ci DW, Zhang ZM, Ding H, et al. Evaluation and selection indices of salinity tolerance in peanut seedling[J]. Acta Ecol Sin, 2015, 35(3): 805-814. | |
[3] | Xu Y, Zhang D, Dai L, et al. Influence of salt stress on growth of spermosphere bacterial communities in different peanut(Arachis hypogaea L.)cultivars[J]. Int J Mol Sci, 2020, 21(6): E2131. |
[4] |
Xu Y, Zhang G, Ding H, et al. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut(Arachis hypogaea L.)[J]. Int Microbiol, 2020, 23(3): 453-465.
doi: 10.1007/s10123-020-00118-0 |
[5] |
吕思琪, 张迪, 徐文越, 等. 不同控释氮肥运筹对粳稻养分吸收与氮素利用的影响[J]. 中国稻米, 2020, 26(1): 67-71, 74.
doi: 10.3969/j.issn.1006-8082.2020.01.015 |
Lü SQ, Zhang D, Xu WY, et al. Effects of different controlled release nitrogen fertilizers on nutrient uptake and nitrogen utilization of Japonica rice[J]. China Rice, 2020, 26(1): 67-71, 74.
doi: 10.3969/j.issn.1006-8082.2020.01.015 |
|
[6] | 翟明振, 胡恒宇, 宁堂原, 等. 盐碱地玉米产量及土壤硝态氮对深松耕作和秸秆还田的响应[J]. 植物营养与肥料学报, 2020, 26(1): 64-73. |
Zhai MZ, Hu HY, Ning TY, et al. Response of maize yield and soil nitrate to deep plowing and straw return in saline-alkali soil[J]. Plant Nutr Fertil Sci, 2020, 26(1): 64-73. | |
[7] | 董士琦. 施氮量和移栽密度对滩涂中度盐碱地水稻产量和品质的影响[D]. 扬州: 扬州大学, 2022. |
Dong SQ. Effects of nitrogen application rate and transplanting density on rice yield and quality in moderate saline-alkali land in tidal flat[D]. Yangzhou: Yangzhou University, 2022. | |
[8] | 吕艳东, 徐令旗, 姜红芳, 等. 氮肥运筹对苏打盐碱地水稻养分积累、转运及产量的影响[J]. 干旱地区农业研究, 2021, 39(1): 103-111. |
Lü YD, Xu LQ, Jiang HF, et al. Effects of nitrogen fertilization managements on nutrient accumulation, transport and yield of rice under soda saline-alkali paddy field[J]. Agric Res Arid Areas, 2021, 39(1): 103-111. | |
[9] | 倪秀珍, 林爱国, 张丽辉. 光照、干旱交互作用对野大麦种子萌发和幼苗生长的影响[J]. 分子植物育种, 2017, 15(12): 5235-5240. |
Ni XZ, Lin AG, Zhang LH. Effects of light intensity and drought interaction on seed germination and seedling growth of Hordeum bre-visubulatum[J]. Mol Plant Breed, 2017, 15(12): 5235-5240. | |
[10] | 杨阳, 刘秉儒, 贾倩民, 等. 赤霉素对干旱胁迫下沙冬青种子萌发的影响[J]. 江苏农业科学, 2014, 42(5): 271-275. |
Yang Y, Liu BR, Jia QM, et al. Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J]. Jiangsu Agric Sci, 2014, 42(5): 271-275. | |
[11] | 秦立金, 李瑞玲. 不同番茄种子萌发特性及幼苗生长动态规律的研究[J]. 赤峰学院学报: 自然科学版, 2017, 33(17): 6-8. |
Qin LJ, Li RL. Study on seed germination characteristics and seedling growth dynamics of different tomato plants[J]. J Chifeng Univ Nat Sci Ed, 2017, 33(17): 6-8. | |
[12] | 刘宇峰. 增施氮肥对氯化钠胁迫下偃麦草属牧草生长发育的影响[D]. 呼和浩特: 内蒙古农业大学, 2012. |
Liu YF. Effect of increasing nitrogen application on growth and development of thinopyrum under sodium chloride stress[D]. Hohhot: Inner Mongolia Agricultural University, 2012. | |
[13] | 穆静, 刘小京, 徐进, 等. 氮素对NaCl胁迫下甜高粱种子萌发及芽苗生长与生理的影响[J]. 中国生态农业学报, 2012, 20(10): 1303-1309. |
Mu J, Liu XJ, Xu J, et al. Effects of nitrogen on sweet sorghum seed germination, seedling growth and physiological traits under NaCl stress[J]. Chin J Eco Agric, 2012, 20(10): 1303-1309.
doi: 10.3724/SP.J.1011.2012.01303 URL |
|
[14] | 龙楠. 不同施氮水平对盐碱地植物种子萌发及幼苗生长的影响[D]. 呼和浩特: 内蒙古农业大学, 2011. |
Long N. Effects of different nitrogen application levels on seed germination and seedling growth of saline-alkali plants[D]. Hohhot: Inner Mongolia Agricultural University, 2011. | |
[15] | 张智猛, 慈敦伟, 张冠初, 等. 山东地区盐碱土花生种子际土壤微生物群落结构的研究[J]. 微生物学报, 2017, 57(4): 582-596. |
Zhang ZM, Ci DW, Zhang GC, et al. Diversity of microbial community structure in the spermosphere of saline-alkali soil in Shandong area[J]. Acta microbiol Sin, 2017, 57(4): 582-596. | |
[16] |
丁红, 孙运霞, 戴良香, 等. 干旱胁迫与氮肥施用量对花生产量、氮素积累及结瘤的影响[J]. 中国油料作物学报, 2023, 45(5): 1022-1027.
doi: 10.19802/j.issn.1007-9084.2022195 |
Ding H, Sun YX, Dai LX, et al. Effects of drought and nitrogen fertilizer application on yield, nitrogen accumulation and nodulation of peanut[J]. Chin J Oil Crop Sci, 2023, 45(5): 1022-1027.
doi: 10.19802/j.issn.1007-9084.2022195 |
|
[17] |
徐扬, 张智猛, 丁红, 等. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
doi: 10.3724/SP.J.1006.2022.14101 |
Xu Y, Zhang ZM, Ding H, et al. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil[J]. Acta Agron Sin, 2022, 48(8): 2088-2099.
doi: 10.3724/SP.J.1006.2022.14101 |
|
[18] |
薛晓梦, 吴洁, 王欣, 等. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
doi: 10.3724/SP.J.1006.2021.04170 |
Xue XM, Wu J, Wang X, et al. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid[J]. Acta Agron Sin, 2021, 47(9): 1768-1778. | |
[19] | Dai L, Zhang G, Yu Z, et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. Int J Mol Sci, 2019, 20(9): E2265. |
[20] |
Xu Y, Zhang Z, Ding H, et al. Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut[J]. Arch Microbiol, 2021, 204(1): 15.
doi: 10.1007/s00203-021-02619-6 pmid: 34894277 |
[21] |
徐扬, 张冠初, 丁红, 等. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0912 |
Xu Y, Zhang GC, Ding H, et al. Effects of soil types on bacterial community diversity on the rhizosphere soil of Arachis hypogaea and yield[J]. Biotechnol Bull, 2022, 38(6): 221-234. | |
[22] |
Xu Y, Yu ZP, Zhang SZ, et al. CYSTM3 negatively regulates salt st-ress tolerance in Arabidopsis[J]. Plant Mol Biol, 2019, 99(4/5): 395-406.
doi: 10.1007/s11103-019-00825-x |
[23] | 易琼, 张秀芝, 何萍, 等. 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1069-1077. |
Yi Q, Zhang XZ, He P, et al. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system[J]. Plant Nutr Fertil Sci, 2010, 16(5): 1069-1077. | |
[24] | 彭柏豪. 盐胁迫下施氮对木麻黄幼苗生长生理的影响[J]. 陕西林业科技, 2023, 51(1): 35-39. |
Peng BH. Effects of nitrogen application on the growth and physiology of Casuarina equisetifolia seedling under salt stress[J]. Shanxi For Sci Technol, 2023, 51(1): 35-39. | |
[25] | 卢发光. 种植密度和施氮量对沿海盐碱地紫花苜蓿生长、生理、产量和品质的影响[D]. 扬州: 扬州大学, 2023. |
Lu FG. Effects of planting density and nitrogen application rate on growth, physiology, yield and quality of alfalfa in coastal saline[D]. Yangzhou: Yangzhou University, 2023. | |
[26] | 柳雪, 王湘银, 李雪芳, 等. 氯盐胁迫下氮素对西瓜根系生长的调控作用[J]. 西北植物学报, 2023, 43(8): 1359-1368. |
Liu X, Wang XY, Li XF, et al. Regulation of nitrogen on watermelon root growth under chlorine salt stress[J]. Acta Bot Boreali-Occident Sin, 2023, 43(8): 1359-1368. | |
[27] | 徐扬, 张冠初, 丁红, 等. 盐胁迫对花生种子际细菌菌群结构的调控[J]. 微生物学杂志, 2022, 42(2): 8-17. |
Xu Y, Zhang GC, Ding H, et al. Regulation of salt coeicion on peanut spermosphere bacterial community structure[J]. J Microbiol, 2022, 42(2): 8-17. | |
[28] |
Kageyama K, Nelson EB. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species[J]. Appl Environ Microbiol, 2003, 69(2): 1114-1120.
doi: 10.1128/AEM.69.2.1114-1120.2003 URL |
[29] |
Schiltz S, Gaillard I, Pawlicki-Jullian N, et al. A review: what is the spermosphere and how can it be studied?[J]. J Appl Microbiol, 2015, 119(6): 1467-1481.
doi: 10.1111/jam.12946 pmid: 26332271 |
[30] | Verona O. The spermosphere[J]. Ann Inst Pasteur(Paris), 1958, 95(6): 795-798. |
[31] | 周永学, 陈静, 李远, 等. 棉秆还田对咸水滴灌棉田土壤酶活性和细菌群落结构多样性的影响[J]. 环境科学, 2022, 43(4): 2192-2203. |
Zhou YX, Chen J, Li Y, et al. Effects of cotton stalk returning on soil enzyme activity and bacterial community structure diversity in cotton field with long-term saline water irrigation[J]. Environ Sci, 2022, 43(4): 2192-2203.
doi: 10.1021/es9003729 URL |
|
[32] | 张科, 李臻, 郑瑶, 等. 河南叶县岩盐可培养中度嗜盐菌的多样性[J]. 微生物学通报, 2020, 47(12): 3987-3997. |
Zhang K, Li Z, Zheng Y, et al. Biodiversity of culturable moderate halophilic bacteria of rock salt in Yexian county, Henan province[J]. Microbiol China, 2020, 47(12): 3987-3997. | |
[33] | 卫婷, 黄枫城, 李慧君, 等. 不同原材料生物炭对农田土壤阿特拉津去除性能及微生物群落结构的影响[J]. 南方农业学报, 2022, 53(9): 2457-2467. |
Wei T, Huang FC, Li HJ, et al. Effects of biochar from different raw materials on atrazine removal and microbial community structure in farmland soil[J]. J South Agric, 2022, 53(9): 2457-2467. | |
[34] | 刘晨阳, 高成林, 赵玥, 等. 基于16S rDNA基因高通量测序分析农田栽参土壤改良后的细菌群落结构[J]. 分子植物育种, 2021, 19(5): 1731-1740. |
Liu CY, Gao CL, Zhao Y, et al. Analysis of bacterial community structure of farmland planted ginseng soil based on high-throughput sequencing of 16S rDNA gene[J]. Mol Plant Breed, 2021, 19(5): 1731-1740. | |
[35] | 李云龙. 三七化感作用及其微生物学消减机制[D]. 南京: 南京师范大学, 2020. |
Li YL. Allelopathy of Panax notoginseng and its microbiological reduction mechanism[D]. Nanjing: Nanjing Normal University, 2020. | |
[36] | 黎妍妍, 李亚培, 孙玉晓, 等. 外源橙皮素对烟草青枯病及根围土壤细菌群落的影响[J]. 中国烟草科学, 2022, 43(5): 38-43. |
Li YY, Li YP, Sun YX, et al. The effects of exogenous hesperetin on tobacco bacterial wilt infection and bacterial community of rhizosphere soil[J]. Chin Tob Sci, 2022, 43(5): 38-43. | |
[37] |
郭英, 杨萍, 张丹雨, 等. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J]. 生物技术通报, 2018, 34(10): 108-115.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0437 |
Guo Y, Yang P, Zhang DY, et al. Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybean[J]. Biotechnol Bull, 2018, 34(10): 108-115. | |
[38] |
雷海英, 赵青松, 杨潇, 等. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9): 157-166.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0379 |
Lei HY, Zhao QS, Yang X, et al. Isolation of efficient nitrogen-fixing bacteria from the rhizosphere of Sophora flavescens and the growth-promoting effect of compound microbial fertilizer on seedlings[J]. Biotechnol Bull, 2020, 36(9): 157-166. | |
[39] | Yanni YG, Dazzo FB, Zidan MI. Beneficial endophytic rhizobia as biofertilizer inoculants for rice and the spatial ecology of this bacteria-plant association[M]//Maheshwari D. Bacteria in Agrobiology: Crop Ecosystems. Berlin, Heidelberg: Springer, 2011: 265-294. |
[40] |
Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio[J]. Int J Syst Bacteriol, 1978, 28(3): 367-393.
doi: 10.1099/00207713-28-3-367 URL |
[41] | 张雅丽, 郭晓明, 胡慧, 等. 牛粪还田对土壤微生物群落特征的影响[J]. 环境科学, 2023, 44(3): 1792-1800. |
Zhang YL, Guo XM, Hu H, et al. Effects of cow manure application on soil microbial community in farmland[J]. Environ Sci, 2023, 44(3): 1792-1800.
doi: 10.1021/es903455p URL |
|
[42] | Wu L, Wang J, Wu H, et al. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture[J]. Int J Mol Sci, 2018, 19(8): E2394. |
[43] |
Xie Y, Liu H, Li H, et al. High-effectively degrade the di-(2-ethylhexyl)phthalate via biochemical system: Resistant bacterial flora and persulfate oxidation activated by BC@Fe3O4[J]. Environ Pollut, 2020, 262: 114100.
doi: 10.1016/j.envpol.2020.114100 URL |
[1] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
[2] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
[3] | 焦进兰, 王文文, 介欣芮, 王华忠, 岳洁瑜. 外源钙缓解小麦幼苗盐胁迫的作用机制[J]. 生物技术通报, 2024, 40(1): 207-221. |
[4] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[5] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[6] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[7] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[8] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[9] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[10] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
[11] | 李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236. |
[12] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[13] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[14] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[15] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||