生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 170-180.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0947
张玉1(), 石磊1, 巩檑1, 聂峰杰1, 杨江伟3,4, 刘璇1, 杨文静1, 张国辉5, 颉瑞霞5, 张丽1,2()
收稿日期:
2023-10-06
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
张丽,女,硕士,副研究员,研究方向:作物生物技术育种;E-mail: lesley119@163.com作者简介:
张玉,女,硕士,研究实习员,研究方向:作物生物技术育种;E-mail: nxzy_work@163.com
基金资助:
ZHANG Yu1(), SHI Lei1, GONG Lei1, NIE Feng-jie1, YANG Jiang-wei3,4, LIU Xuan1, YANG Wen-jing1, ZHANG Guo-hui5, XIE Rui-xia5, ZHANG Li1,2()
Received:
2023-10-06
Published:
2024-03-26
Online:
2024-04-08
摘要:
【目的】 WUSCHE-相关同源盒(WUSCHEL-related homeobox, WOX)基因家族是植物特有的转录因子家族,在植物生长发育、干细胞分化调控、逆境胁迫响应等过程中扮演重要角色。开展马铃薯WOX基因家族鉴定与功能研究,将为马铃薯遗传改良提供优良基因资源与理论依据。【方法】 基于拟南芥、番茄、烟草和水稻WOX蛋白序列,利用HMMER 3.0和BLASTP鉴定马铃薯WOX基因家族成员,使用MCScanX软件分析WOX基因家族成员在马铃薯种内及种间的共线性,并采用邻接法构建系统发育进化树。利用ExPASy、GSDS等软件分析马铃薯WOX基因家族成员理化性质、基因结构、蛋白motif、启动子区域转录因子结合位点。基于PGSC数据库中马铃薯转录组数据,分析StWOXs在不同组织和非生物胁迫下的表达模式;以可能参与离体再生过程的StWOX5作为候选基因,利用实时荧光定量PCR技术分析该基因在具有不同离体再生能力的4个马铃薯品种(系)再生过程中的表达情况。【结果】 鉴定得到11个马铃薯WOX基因家族成员,分布在5条染色体上,分为WUS、中间和古老共3个进化分支,不同分支中StWOXs基因结构、蛋白motif组成、转录因子结合位点类型和数量存在不同程度的差异。表达模式结果表明,马铃薯WOX基因家族成员参与离体再生和非生物胁迫响应,StWOX4/5/11/13在愈伤组织中特异表达,StWUS、StWOX1/3c/4/5/13在甘露醇处理下上调表达,StWOX3a/11在NaCl处理下上调表达,StWOX4/5/13在热胁迫中上调表达,且StWOX5相对表达量与愈伤组织分化率呈正相关。【结论】 不同马铃薯WOX基因具有潜在的功能多样性,StWOX5具有促进马铃薯离体再生分化的作用,参与了非生物胁迫反应。
张玉, 石磊, 巩檑, 聂峰杰, 杨江伟, 刘璇, 杨文静, 张国辉, 颉瑞霞, 张丽. 马铃薯WOX基因家族的鉴定及在离体再生和非生物胁迫中的表达分析[J]. 生物技术通报, 2024, 40(3): 170-180.
ZHANG Yu, SHI Lei, GONG Lei, NIE Feng-jie, YANG Jiang-wei, LIU Xuan, YANG Wen-jing, ZHANG Guo-hui, XIE Rui-xia, ZHANG Li. Genome-wide Identification of Potato WOX Gene Family and Its Expression Analysis in in vitro Regeneration and Abiotic Stress[J]. Biotechnology Bulletin, 2024, 40(3): 170-180.
基因 Gene | 引物序列 Primer sequence(5'-3') |
---|---|
StWOX5 | F: TGCTGAAACTGAAAAGCTTAGACT |
R: GGATGATCCATCTCAGCTCCA | |
EF1α | F: CAAGGATGACCCAGCCAAG |
R: TTCCTTACCTGAACGCCTGT |
表1 实时荧光定量PCR引物
Table 1 Primers used in real-time quantitative PCR
基因 Gene | 引物序列 Primer sequence(5'-3') |
---|---|
StWOX5 | F: TGCTGAAACTGAAAAGCTTAGACT |
R: GGATGATCCATCTCAGCTCCA | |
EF1α | F: CAAGGATGACCCAGCCAAG |
R: TTCCTTACCTGAACGCCTGT |
序号 No. | 基因 Gene | 基因ID Gene ID | 染色体上位置 Position in chromosome | 氨基酸数量Number of amino acids | 相对分子质量Molecular weight/kD | 等电点Isoelectric points | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|---|---|
1 | StWUS | Soltu.DM.02G023940 | chr.02:37 323 370-37 324 685 | 263 | 29.8 | 6.55 | 细胞核Nuclear |
2 | StWOX1 | Soltu.DM.03G033140 | chr.03:56 859 969-56 862 746 | 391 | 44.1 | 6.71 | 细胞核Nuclear |
3 | StWOX2 | Soltu.DM.06G031390 | chr.06:56 294 501-56 295 977 | 236 | 26.7 | 8.61 | 细胞核Nuclear |
4 | StWOX3a | Soltu.DM.11G026210 | chr.11:46 280 883-46 282 433 | 213 | 24.5 | 9.07 | 细胞核Nuclear |
5 | StWOX3b | Soltu.DM.11G026200 | chr.11:46 246 409-46 248 855 | 200 | 23.1 | 9.28 | 细胞核Nuclear |
6 | StWOX3c | Soltu.DM.06G031020 | chr.06:55 970 577-55 972 200 | 173 | 20.0 | 9.97 | 细胞核Nuclear |
7 | StWOX4 | Soltu.DM.04G033400 | chr.04:64 994 427-64 996 252 | 243 | 28.0 | 8.91 | 细胞核Nuclear |
8 | StWOX5 | Soltu.DM.03G012800 | chr.03:34 493 065-34 493 856 | 157 | 18.5 | 5.95 | 细胞核Nuclear |
9 | StWOX9 | Soltu.DM.02G016680 | chr.02:31 173 532-31 175 481 | 333 | 37.1 | 7.33 | 细胞核Nuclear |
10 | StWOX11 | Soltu.DM.06G028250 | chr.06:53 617 232-53 619 413 | 323 | 35.6 | 5.78 | 细胞核Nuclear |
11 | StWOX13 | Soltu.DM.02G022590 | chr.02:36 352 960-36 356 110 | 275 | 30.9 | 5.53 | 细胞核Nuclear |
表2 马铃薯WOX基因家族成员信息
Table 2 Information of WOX gene family members in S. tuberosum
序号 No. | 基因 Gene | 基因ID Gene ID | 染色体上位置 Position in chromosome | 氨基酸数量Number of amino acids | 相对分子质量Molecular weight/kD | 等电点Isoelectric points | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|---|---|
1 | StWUS | Soltu.DM.02G023940 | chr.02:37 323 370-37 324 685 | 263 | 29.8 | 6.55 | 细胞核Nuclear |
2 | StWOX1 | Soltu.DM.03G033140 | chr.03:56 859 969-56 862 746 | 391 | 44.1 | 6.71 | 细胞核Nuclear |
3 | StWOX2 | Soltu.DM.06G031390 | chr.06:56 294 501-56 295 977 | 236 | 26.7 | 8.61 | 细胞核Nuclear |
4 | StWOX3a | Soltu.DM.11G026210 | chr.11:46 280 883-46 282 433 | 213 | 24.5 | 9.07 | 细胞核Nuclear |
5 | StWOX3b | Soltu.DM.11G026200 | chr.11:46 246 409-46 248 855 | 200 | 23.1 | 9.28 | 细胞核Nuclear |
6 | StWOX3c | Soltu.DM.06G031020 | chr.06:55 970 577-55 972 200 | 173 | 20.0 | 9.97 | 细胞核Nuclear |
7 | StWOX4 | Soltu.DM.04G033400 | chr.04:64 994 427-64 996 252 | 243 | 28.0 | 8.91 | 细胞核Nuclear |
8 | StWOX5 | Soltu.DM.03G012800 | chr.03:34 493 065-34 493 856 | 157 | 18.5 | 5.95 | 细胞核Nuclear |
9 | StWOX9 | Soltu.DM.02G016680 | chr.02:31 173 532-31 175 481 | 333 | 37.1 | 7.33 | 细胞核Nuclear |
10 | StWOX11 | Soltu.DM.06G028250 | chr.06:53 617 232-53 619 413 | 323 | 35.6 | 5.78 | 细胞核Nuclear |
11 | StWOX13 | Soltu.DM.02G022590 | chr.02:36 352 960-36 356 110 | 275 | 30.9 | 5.53 | 细胞核Nuclear |
图1 马铃薯WOX成员共线性分析 A:马铃薯WOX成员种内共线性分析图;B:拟南芥、番茄、水稻、马铃薯WOX种间共线性分析图
Fig. 1 Collinear analysis of potato WOX members A: The collinear analysis of WOX members in S. tuberosum. B: The collinear analysis in different WOX members between Arabidopsis thaliana, S. lycopersicum, Oryza sativa, and S. tuberosum
图2 马铃薯、拟南芥、番茄、烟草、水稻WOX蛋白的系统发育分析
Fig. 2 Phylogenetic analysis of WOX proteins among S. tuberosum, A. thaliana, S. lycopersicum, N. tabacum, and O. sativa
图5 StWOXs启动子区域转录因子结合位点预测及数量统计 A:转录因子结合位点预测;B:转录因子结合位点数量统计
Fig. 5 Prediction and numerical statistics of TFBS in the promoter region of StWOXs A: The prediction of TFBS. B: The statistical analysis of TFBS
图6 StWOXs在不同组织部位(A)、干旱和盐胁迫(B)、热胁迫(C)中的表达模式
Fig. 6 Relative expression patterns of StWOXs in different tissues(A), under drought and salt stresses(B), and under heat stress(C)
图7 马铃薯不同品种(系)愈伤组织诱导分化及StWOX5的RT-qPCR验证 A:马铃薯不同品种(系)愈伤组织诱导阶段表型;B:马铃薯不同品种(系)愈伤组织诱导率;C:马铃薯不同品种(系)愈伤组织分化阶段表型;D:马铃薯不同品种(系)愈伤组织分化率;E:StWOX5在马铃薯不同品种(系)愈伤组织分化阶段的相对表达量。小写字母表示差异达到显著水平(P<0.05)
Fig. 7 Callus induction and differentiation of different potato varieties(lines), and RT-qPCR verification of StWOX5 A: Phenotypes of different potato varieties(lines)at the stage of callus induction. B: Callus induction rates in different potato varieties(lines). C: Phenotypes of different potato varieties(lines)at the stage of callus differentiation. D: Callus differentiation rates in different potato varieties(lines). E: Relative expressions of StWOX5 in different potato varieties(lines)at the stage of callus differentiation. The lowercase letters indicate that the difference reached a significant level(P<0.05)
[1] |
van der Graaff E, Laux T, Rensing SA. The WUS homeobox-containing(WOX)protein family[J]. Genome Biol, 2009, 10(12): 248.
doi: 10.1186/gb-2009-10-12-248 pmid: 20067590 |
[2] | Lian GB, Ding ZW, Wang Q, et al. Origins and evolution of WUSCHEL-related homeobox protein family in plant Kingdom[J]. Sci World J, 2014, 2014: 534140. |
[3] |
Laux T, Mayer KF, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1): 87-96.
doi: 10.1242/dev.122.1.87 pmid: 8565856 |
[4] |
Zhang X, Zong J, Liu JH, et al. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar[J]. J Integr Plant Biol, 2010, 52(11): 1016-1026.
doi: 10.1111/j.1744-7909.2010.00982.x |
[5] |
Lowe K, Wu E, Wang N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. Plant Cell, 2016, 28(9): 1998-2015.
doi: 10.1105/tpc.16.00124 URL |
[6] |
Nakata M, Okada K. The three-domain model: a new model for the early development of leaves in Arabidopsis thaliana[J]. Plant Signal Behav, 2012, 7(11): 1423-1427.
doi: 10.4161/psb.21959 URL |
[7] | Niu HH, Liu XF, Tong C, et al. The WUSCHEL-related homeobox1 gene of cucumber regulates reproductive organ development[J]. J Exp Bot, 2018, 69(22): 5373-5387. |
[8] |
Yang RJ, Wu ZY, Bai C, et al. Overexpression of PvWOX3a in switchgrass promotes stem development and increases plant height[J]. Hortic Res, 2021, 8(1): 252.
doi: 10.1038/s41438-021-00678-w |
[9] |
Palovaara J, Hakman I. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis[J]. Plant Mol Biol, 2008, 66(5): 533-549.
doi: 10.1007/s11103-008-9289-5 pmid: 18209956 |
[10] |
Breuninger H, Rikirsch E, Hermann M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo[J]. Dev Cell, 2008, 14(6): 867-876.
doi: 10.1016/j.devcel.2008.03.008 pmid: 18539115 |
[11] |
Ji JB, Strable J, Shimizu R, et al. WOX4 promotes procambial development[J]. Plant Physiol, 2010, 152(3): 1346-1356.
doi: 10.1104/pp.109.149641 pmid: 20044450 |
[12] |
Sarkar AK, Luijten M, Miyashima S, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007, 446(7137): 811-814.
doi: 10.1038/nature05703 |
[13] |
Wang K, Shi L, Liang XN, et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nat Plants, 2022, 8(2): 110-117.
doi: 10.1038/s41477-021-01085-8 pmid: 35027699 |
[14] |
Park SO, Zheng Z, Oppenheimer DG, et al. The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development[J]. Development, 2005, 132(4): 841-849.
doi: 10.1242/dev.01654 URL |
[15] |
Kong DY, Hao YL, Cui HC. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana[J]. Mol Plant, 2016, 9(2): 261-270.
doi: 10.1016/j.molp.2015.11.006 URL |
[16] | Wang LQ, Li Z, Wen SS, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar[J]. J Exp Bot, 2020, 71(4): 1503-1513. |
[17] | Minh-Thu PT, Kim JS, Chae S, et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice[J]. Mol Cells, 2018, 41(8): 781-798. |
[18] |
Denis E, Kbiri N, Mary V, et al. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidop-sis[J]. Plant J, 2017, 90(3): 560-572.
doi: 10.1111/tpj.2017.90.issue-3 URL |
[19] |
Zhu JH, Shi HZ, Lee BH, et al. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway[J]. Proc Natl Acad Sci USA, 2004, 101(26): 9873-9878.
doi: 10.1073/pnas.0403166101 URL |
[20] | 艾安涛, 张宝会, 彭徐乾, 等. 茶树WOX基因家族的鉴定和表达模式分析[J]. 中国茶叶, 2021, 43(3): 28-36. |
Ai AT, Zhang BH, Peng XQ, et al. Identification and expression pattern analysis of WOX gene family in Camellia sinensis(L.)[J]. China Tea, 2021, 43(3): 28-36. | |
[21] |
Sajjad M, Wei X, Liu LS, et al. Transcriptome analysis revealed GhWOX4 intercedes myriad regulatory pathways to modulate drought tolerance and vascular growth in cotton[J]. Int J Mol Sci, 2021, 22(2): 898.
doi: 10.3390/ijms22020898 URL |
[22] |
Wang LQ, Wen SS, Wang R, et al. PagWOX11/12a activates Pag-CYP736A12 gene that facilitates salt tolerance in poplar[J]. Plant Biotechnol J, 2021, 19(11): 2249-2260.
doi: 10.1111/pbi.v19.11 URL |
[23] |
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3): 403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712 |
[24] | Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database[J]. Nucleic Acids Res, 2014, 42(Database issue): D222-D230. |
[25] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[26] |
Shi L, Wang K, Du LP, et al. Genome-wide identification and expression profiling analysis of WOX family protein-encoded genes in triticeae species[J]. Int J Mol Sci, 2021, 22(17): 9325.
doi: 10.3390/ijms22179325 URL |
[27] |
Li H, Li XH, Sun MH, et al. Molecular characterization and gene expression analysis of tomato WOX transcription factor family under abiotic stress and phytohormone treatment[J]. J Plant Biochem Biotechnol, 2021, 30(4): 973-986.
doi: 10.1007/s13562-021-00723-8 |
[28] | 阳文龙, 徐楚, 韩嘉琪, 等. 芥菜WOX基因家族的全基因组鉴定与分析[J]. 生物工程学报, 2023, 39(2): 537-551. |
Yang WL, Xu C, Han JQ, et al. Genome-wide identification and characterization of the WOX gene family in Brassica juncea[J]. Chin J Biotechnol, 2023, 39(2): 537-551. | |
[29] | 李晓旭, 刘成, 李伟, 等. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
Li XX, Liu C, Li W, et al. Genome-wide identification, phylogenetic analysis and expression profiling of the WOX family genes in Sola-num lycopersicum[J]. Hereditas, 2016, 38(5): 444-460. | |
[30] |
Liu YH, Khan AR, Gan YB. C2H2 zinc finger proteins response to abiotic stress in plants[J]. International Journal of Molecular Sciences, 2022, 23(5): 2730.
doi: 10.3390/ijms23052730 URL |
[31] |
Luo T, Song YN, Gao HL, et al. Genome-wide identification and functional analysis of Dof transcription factor family in Camelina sativa[J]. BMC Genomics, 2022, 23(1): 812.
doi: 10.1186/s12864-022-09056-9 |
[32] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10): 573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[33] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783 URL |
[34] |
郭彦秀, 陈静, 王艳芳, 等. Dof转录因子在植物中的调控作用[J]. 生物技术通报, 2019, 35(5): 146-156.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1062 |
Guo YX, Chen J, Wang YF, et al. Roles of Dof transcription factors in the regulation of plant[J]. Biotechnol Bull, 2019, 35(5): 146-156. | |
[35] | 郭旭, 张慧莹, 王铮, 等. 绿豆VrWOX基因家族鉴定及表达分析[J]. 生物工程学报, 2023, 39(2): 566-585. |
Guo X, Zhang HY, Wang Z, et al. Molecular characterization and transcriptional analysis of VrWOX genes in mungbean[Vigna radiate(L.) Wilczek][J]. Chin J Biotechnol, 2023, 39(2): 566-585. | |
[36] | 李晓旭, 郭存, 蒲文宣, 等. 普通烟草WOX转录因子家族的全基因组鉴定及分析[J]. 中国烟草学报, 2021, 27(1): 90-100. |
Li XX, Guo C, Pu WX, et al. Genome-wide identification and systemic analysis of WOX family genes in tobacco[J]. Acta Tabacaria Sin, 2021, 27(1): 90-100. | |
[37] |
Liu BB, Wang L, Zhang J, et al. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation[J]. BMC Genomics, 2014, 15: 296.
doi: 10.1186/1471-2164-15-296 |
[38] |
侯思宇, 王欣芳, 杜伟, 等. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析[J]. 中国农业科学, 2021, 54(17): 3573-3586.
doi: 10.3864/j.issn.0578-1752.2021.17.002 |
Hou SY, Wang XF, Du W, et al. Genome-wide identification of WOX family and expression analysis of callus induction rate in Tartary buckwheat[J]. Sci Agric Sin, 2021, 54(17): 3573-3586. |
[1] | 梅显军, 宋慧洋, 李京昊, 梅超, 宋倩娜, 冯瑞云, 陈喜明. 马铃薯StDof5的克隆及表达分析[J]. 生物技术通报, 2024, 40(3): 181-192. |
[2] | 吴星星, 洪海波, 甘志承, 李瑞宁, 黄先忠. 辣椒CaPI的克隆与功能分析[J]. 生物技术通报, 2024, 40(3): 193-201. |
[3] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[4] | 吴圳, 张明英, 闫锋, 李依民, 高静, 颜永刚, 张岗. 掌叶大黄(Rheum palmatum L.)WRKY基因家族鉴定与分析[J]. 生物技术通报, 2024, 40(1): 250-261. |
[5] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[6] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[7] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[8] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[9] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[10] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[11] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[12] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[13] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[14] | 安苗, 王彤彤, 付逸婷, 夏俊俊, 彭锁堂, 段永红. 52个马铃薯遗传多样性分析及SSR分子身份证构建[J]. 生物技术通报, 2023, 39(12): 136-147. |
[15] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||