生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 41-51.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0880
收稿日期:
2023-09-12
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
李忠光, 男, 博士, 教授, 研究方向:植物逆境生物学;E-mail: zhongguang_li@163.com作者简介:
周宏丹, 女, 硕士研究生, 研究方向:植物逆境生物学;E-mail: zhouhongdan_zz@163.com
基金资助:
ZHOU Hong-dan(), LUO Xiao-ping, TU Mi-xue, LI Zhong-guang()
Received:
2023-09-12
Published:
2024-03-26
Online:
2024-04-08
摘要:
褪黑素(melatonin, MT)与其他传统五大类激素相比,其鉴定仅有20多年的历史,是一种新兴植物激素,是有机体中具有多种生理功能的多效信号分子。在植物中,MT被称为植物褪黑素(phytomelatonin),它不仅调节种子萌发、根系构型、气孔运动、生物节律和开花与衰老,还通过激活抗氧化系统的活力,清除活性氧(reactive oxygen species, ROS),从而减轻胁迫造成的氧化胁迫、渗透胁迫、蛋白变性和细胞损伤,最终使植物应答生物和非生物胁迫。本文基于MT代谢及其在植物应答非生物胁迫中的最新研究进展,总结MT在植物中的合成与分解代谢,归纳逆境胁迫下MT通过直接清除ROS和/或触发信号转导途径,上调抗逆相关基因表达,继而激活渗透调节系统和抗氧化系统的活力,促进逆境蛋白和次生代谢物质的合成,稳定光合作用和碳代谢,减少ROS的积累和细胞氧化损伤,最终提高植物对高温、低温、干旱、盐渍、重金属、紫外辐射和水涝等非生物胁迫的抵抗能力。本文为理解MT的代谢、生理功能及细胞信号转导途径奠定了理论基础,并指出未来的研究方向。
周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51.
ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress[J]. Biotechnology Bulletin, 2024, 40(3): 41-51.
图1 植物中褪黑素的合成途径 植物细胞至少可通过4个步骤、5条途径和6个关键酶在叶绿体、细胞质和线粒体中合成植物褪黑素(phytomelatonin, MT)。SKM:莽草酸;Trp:色氨酸;TDC:色氨酸脱羧酶;TPH:色氨酸羟化酶;COMT:咖啡酸-O-甲基转移酶;ASMT:N-乙酰血清素甲基转移酶;TAM:色胺;5HT:5-羟色氨酸;SER:5-羟色胺;5MT:5-甲氧基色胺;T5H:色氨酸5-羟化酶;SNAT:5-羟色氨-N-乙酰转移酶;NAS:N-乙酰-5-羟色胺;ENP:酶促、非酶促和假酶促反应;AFMK:N1-乙酰基-N2-甲酰基-5-甲氧基犬尿酰胺
Fig. 1 Biosynthetic pathway of melatonin in plants Phytomelatonin(MT)can be biosynthesized in chloroplasts, cytosol, and mitochondria of the plant cells by at least four steps, five pathways, and six key enzymes. SKM: Shikimic acid. Trp: Tryptophan. TDC: Tryptophan decarboxylase. TPH: Tryptophan hydroxylase. COMT: Caffeic acid O-methyltransferase. ASMT: N-acetylserotonin methyltransferase. TAM: Tryptamine. 5HT: 5-hydroxytryptophan. SER: Serotonin; 5MT: 5-methoxytryptamine. T5H: Tryptophan-5-hydroxylase. SNAT: Serotonin N-acetyltransferase. NAS: N-acetylserotonin. ENP: Enzymatic, non-enzymatic, and pseudoenzymatic reaction. AFMK: N1-acetyl-N2-formyl-5-methoxykynuramine
图2 植物褪黑素在植物应答非生物胁迫中的作用 高温、低温、干旱、盐渍、水涝、重金属和紫外辐射(ultraviolet-B, UV-B)胁迫或外源提供褪黑素(melatonin, MT)诱发的MT信号,通过两条途径应答逆境胁迫。ROS:活性氧;Ca2+:钙;NO:一氧化氮;H2S:硫化氢;ABA:脱落酸;GA:赤霉素;JA:茉莉酸;PA:多胺;Pro:脯氨酸;SS:可溶性糖;SP:可溶性蛋白;HSP:热激蛋白;LEA:胚胎晚期丰富蛋白;SOD:超氧化物歧化酶;APX:抗坏血酸过氧化物酶;GSH:谷胱甘肽。(↑)和(↓)分别表示增加和减少
Fig. 2 Role of phytomelatonin in plant response to abiotic stress Melatonin(MT)signaling be triggered in plants by high temperature, low temperature, drought, salt, flooding, heavy metal, and ultraviolet-B(UV-B)stress, which in turn respond to these stresses via two signaling pathways. ROS: Reactive oxygen species; Ca2+: calcium ion; NO: nitric oxide; H2S: hydrogen sulfide; ABA: abscisic acid; GA: gibberelin; JA: jasmonic acid; PA: polyamine; Pro: proline; SS: soluble sugar; SP: soluble proteins; HSP: heat shock proteins; LEA: late embryogenesis abundant; SOD: superoxide dismutase; APX: ascorbate peroxidase; GSH: glutathione.(↑)and(↓)indicate increase and decrease, respectively
[1] | Lerner AB, Case JD, Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes[J]. J Am Chem Soc, 1958, 80(10): 2587. |
[2] | van Tassel DL, Li J, O'neill SD. Melatonin: identification of a potential dark signal in plants[J]. Plant Physiology, 1993, 102: 117. |
[3] |
Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochem Mol Biol Int, 1995, 35(3): 627-634.
pmid: 7773197 |
[4] |
Kanwar MK, Yu JQ, Zhou J. Phytomelatonin: recent advances and future prospects[J]. J Pineal Res, 2018, 65(4): e12526.
doi: 10.1111/jpi.2018.65.issue-4 URL |
[5] |
Blask DE, Dauchy RT, Sauer LA, et al. Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin[J]. Carcinogenesis, 2004, 25(6): 951-960.
pmid: 14754876 |
[6] |
Mannino G, Pernici C, Serio G, et al. Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals-an overview[J]. Int J Mol Sci, 2021, 22(18): 9996.
doi: 10.3390/ijms22189996 URL |
[7] |
Ahmad I, Zhu GL, Zhou GS, et al. Melatonin role in plant growth and physiology under abiotic stress[J]. Int J Mol Sci, 2023, 24(10): 8759.
doi: 10.3390/ijms24108759 URL |
[8] |
Colombage R, Singh MB, Bhalla PL. Melatonin and abiotic stress tolerance in crop plants[J]. Int J Mol Sci, 2023, 24(8): 7447.
doi: 10.3390/ijms24087447 URL |
[9] | Mukherjee. Melatonin: role in plant signaling, growth and stress tolerance[M]. Switzerland: Springer Nature, 2023. |
[10] |
Ravi B, Foyer CH, Pandey GK. The integration of reactive oxygen species(ROS)and calcium signalling in abiotic stress responses[J]. Plant Cell Environ, 2023, 46(7): 1985-2006.
doi: 10.1111/pce.v46.7 URL |
[11] |
Tousi S, Zoufan P, Ghahfarrokhie AR. Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow(Malva parviflora)plants[J]. Ecotoxicol Environ Saf, 2020, 206: 111403.
doi: 10.1016/j.ecoenv.2020.111403 URL |
[12] |
Gu Q, Xiao QQ, Chen ZP, et al. Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: an update[J]. Int J Mol Sci, 2022, 23(10): 5666.
doi: 10.3390/ijms23105666 URL |
[13] |
Kaya C, Higgs D, Ashraf M, et al. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper(Capsicum annuum L.)plants to iron deficiency and salt stress alone or in combination[J]. Physiol Plant, 2020, 168(2): 256-277.
doi: 10.1111/ppl.v168.2 URL |
[14] |
Sun YP, Ma C, Kang X, et al. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber[J]. Plant Physiol Biochem, 2021, 167: 101-112.
doi: 10.1016/j.plaphy.2021.07.023 URL |
[15] |
Kaya C, Ugurlar F, Ashraf M, et al. The involvement of hydrogen sulphide in melatonin-induced tolerance to arsenic toxicity in pepper(Capsicum annuum L.)plants by regulating sequestration and subcellular distribution of arsenic, and antioxidant defense system[J]. Chemosphere, 2022, 309(Pt1): 136678.
doi: 10.1016/j.chemosphere.2022.136678 URL |
[16] |
Falcón J, Besseau L, Fuentès M, et al. Structural and functional evolution of the pineal melatonin system in vertebrates[J]. Ann N Y Acad Sci, 2009, 1163: 101-111.
doi: 10.1111/nyas.2009.1163.issue-1 URL |
[17] |
Zhao DK, Yu Y, Shen Y, et al. Melatonin synthesis and function: evolutionary history in animals and plants[J]. Front Endocrinol, 2019, 10: 249.
doi: 10.3389/fendo.2019.00249 pmid: 31057485 |
[18] |
Liu GF, Hu Q, Zhang X, et al. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions[J]. J Exp Bot, 2022, 73(17): 5818-5827.
doi: 10.1093/jxb/erac196 pmid: 35522986 |
[19] |
Murch SJ, KrishnaRaj S, Saxena PK. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort(Hypericum perforatum L. cv. Anthos)plants[J]. Plant Cell Rep, 2000, 19(7): 698-704.
doi: 10.1007/s002990000206 pmid: 30754808 |
[20] |
Zhao DQ, Wang R, Liu D, et al. Melatonin and expression of tryptophan decarboxylase gene(TDC)in herbaceous peony(Paeonia lactiflora pall.) flowers[J]. Molecules, 2018, 23(5): 1164.
doi: 10.3390/molecules23051164 URL |
[21] |
Kang K, Kong K, Park S, et al. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice[J]. J Pineal Res, 2011, 50(3): 304-309.
doi: 10.1111/j.1600-079X.2010.00841.x pmid: 21210840 |
[22] |
Park S, Byeon Y, Lee HY, et al. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine(Pinus taeda)[J]. J Pineal Res, 2014, 57(3): 348-355.
doi: 10.1111/jpi.2014.57.issue-3 URL |
[23] |
Lee HY, Byeon Y, Lee K, et al. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations[J]. J Pineal Res, 2014, 57(4): 418-426.
doi: 10.1111/jpi.2014.57.issue-4 URL |
[24] |
Byeon Y, Yool Lee H, Choi DW, et al. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts[J]. J Exp Bot, 2015, 66(3): 709-717.
doi: 10.1093/jxb/eru357 URL |
[25] |
Altaf MA, Shahid R, Ren MX, et al. Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses[J]. Physiol Plant, 2021, 172(2): 820-846.
doi: 10.1111/ppl.13262 pmid: 33159319 |
[26] |
Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts[J]. J Pineal Res, 2016, 61(4): 426-437.
doi: 10.1111/jpi.12364 pmid: 27600803 |
[27] | 曹红利, 陆鲸冰, 吴英杰, 等. 茶树7个褪黑素合成酶基因的鉴定及非生物胁迫响应[J]. 应用与环境生物学报, 2020, 26(5): 1244-1250. |
Cao HL, Lu JB, Wu YJ, et al. Isolation and expression analysis of melatonin biosynthesis genes in tea plant in response to abiotic stress[J]. Chin J Appl Environ Biol, 2020, 26(5): 1244-1250. | |
[28] |
Tan DX, Manchester LC, Esteban-Zubero E, et al. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism[J]. Molecules, 2015, 20(10): 18886-18906.
doi: 10.3390/molecules201018886 URL |
[29] |
Sun CL, Liu LJ, Wang LX, et al. Melatonin: a master regulator of plant development and stress responses[J]. J Integr Plant Biol, 2021, 63(1): 126-145.
doi: 10.1111/jipb.12993 |
[30] |
Tan DX, Manchester LC, Di Mascio P, et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation[J]. FASEB J, 2007, 21(8): 1724-1729.
doi: 10.1096/fsb2.v21.8 URL |
[31] |
Okazaki M, Higuchi K, Aouini A, et al. Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2, 3-dioxygenase from rice in tomato plants[J]. J Pineal Res, 2010, 49(3): 239-247.
doi: 10.1111/jpi.2010.49.issue-3 URL |
[32] |
Hardeland R, Tan DX, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines[J]. J Pineal Res, 2009, 47(2): 109-126.
doi: 10.1111/j.1600-079X.2009.00701.x pmid: 19573038 |
[33] |
Byeon Y, Lee HY, Hwang OJ, et al. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment[J]. J Pineal Res, 2015, 58(4): 470-478.
doi: 10.1111/jpi.12232 pmid: 25783167 |
[34] |
Back K. Melatonin metabolism, signaling and possible roles in plants[J]. Plant J, 2021, 105(2): 376-391.
doi: 10.1111/tpj.v105.2 URL |
[35] |
Lee HY, Lee K, Back K. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering[J]. Biomolecules, 2019, 9(11): 712.
doi: 10.3390/biom9110712 URL |
[36] |
Byeon Y, Tan DX, Reiter RJ, et al. Predominance of 2-hydroxymelatonin over melatonin in plants[J]. J Pineal Res, 2015, 59(4): 448-454.
doi: 10.1111/jpi.12274 pmid: 26331804 |
[37] |
Byeon Y, Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice(Oryza sativa)[J]. J Pineal Res, 2015, 58(3): 343-351.
doi: 10.1111/jpi.2015.58.issue-3 URL |
[38] |
Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?[J]. J Pineal Res, 2007, 42(1): 28-42.
doi: 10.1111/jpi.2007.42.issue-1 URL |
[39] |
Tan DX, Reiter RJ. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants[J]. J Exp Bot, 2020, 71(16): 4677-4689.
doi: 10.1093/jxb/eraa235 URL |
[40] |
Choi GH, Back K. Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression[J]. Melatonin Res, 2019, 2(3): 120-138.
doi: 10.32794/11250034 URL |
[41] |
Lal MK, Tiwari RK, Gahlaut V, et al. Physiological and molecular insights on wheat responses to heat stress[J]. Plant Cell Rep, 2022, 41(3): 501-518.
doi: 10.1007/s00299-021-02784-4 |
[42] |
Li ZG, Xu Y, Bai LK, et al. Melatonin enhances thermotolerance of maize seedlings(Zea mays L.)by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems[J]. Protoplasma, 2019, 256(2): 471-490.
doi: 10.1007/s00709-018-1311-4 |
[43] | 王译, 韩莹琰, 郝敬虹, 等. 褪黑素对高温胁迫下生菜抗氧化酶系统的影响[J]. 北京农学院学报, 2022, 37(2): 45-49. |
Wang Y, Han YY, Hao JH, et al. Effects of melatonin on antioxidant enzyme of lettuce under high temperature stress[J]. J Beijing Univ Agric, 2022, 37(2): 45-49. | |
[44] |
Liu SJ, Sun BX, Cao BL, et al. Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger(Zingiber officinale)[J]. Protoplasma, 2023, 260(2): 405-418.
doi: 10.1007/s00709-022-01783-w |
[45] |
Shi HT, Tan DX, Reiter RJ, et al. Melatonin induces class A1 heat-shock factors(HSFA1s)and their possible involvement of thermotolerance in Arabidopsis[J]. J Pineal Res, 2015, 58(3): 335-342.
doi: 10.1111/jpi.2015.58.issue-3 URL |
[46] |
徐晨潇, 张晓宇, 刘超越, 等. 外源褪黑素与钙离子互作对高温胁迫下黄瓜幼苗过氧化伤害的缓解效应[J]. 应用生态学报, 2022, 33(10): 2725-2735.
doi: 10.13287/j.1001-9332.202210.010 |
Xu CX, Zhang XY, Liu CY, et al. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress[J]. Chin J Appl Ecol, 2022, 33(10): 2725-2735. | |
[47] |
Wei HJ, He WY, Kuang YX, et al. Arbuscular mycorrhizal symbiosis and melatonin synergistically suppress heat-induced leaf senescence involves in abscisic acid, gibberellin, and cytokinin-mediated pathways in perennial ryegrass[J]. Environ Exp Bot, 2023, 213: 105436.
doi: 10.1016/j.envexpbot.2023.105436 URL |
[48] |
Iqbal N, Fatma M, Gautam H, et al. The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress[J]. Plants, 2021, 10(9): 1778.
doi: 10.3390/plants10091778 URL |
[49] |
Jahan MS, Shu S, Wang Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biol, 2019, 19(1): 414.
doi: 10.1186/s12870-019-1992-7 pmid: 31590646 |
[50] |
Ding YL, Shi YT, Yang SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytol, 2019, 222(4): 1690-1704.
doi: 10.1111/nph.15696 pmid: 30664232 |
[51] |
Buttar ZA, Wu SN, Arnao MB, et al. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery[J]. Plants, 2020, 9(7): 809.
doi: 10.3390/plants9070809 URL |
[52] |
Wang ZQ, Pu HL, Shan SS, et al. Melatonin enhanced chilling tolerance and alleviated peel browning of banana fruit under low temperature storage[J]. Postharvest Biol Technol, 2021, 179: 111571.
doi: 10.1016/j.postharvbio.2021.111571 URL |
[53] |
Liu GS, Zhang YX, Yun Z, et al. Melatonin enhances cold tolerance by regulating energy and proline metabolism in Litchi fruit[J]. Foods, 2020, 9(4): 454.
doi: 10.3390/foods9040454 URL |
[54] | 任利明, 谢芳, 丁飞, 等. 褪黑素对花椒幼苗低温伤害的缓解效应[J]. 西北林学院学报, 2023, 38(4): 34-43. |
Ren LM, Xie F, Ding F, et al. The mitigative effect of melatonin on Zanthoxylum bungeanum seedlings under chilling stress[J]. J Northwest For Univ, 2023, 38(4): 34-43. | |
[55] |
Korkmaz A, Değer Ö, Szafrańska K, et al. Melatonin effects in enhancing chilling stress tolerance of pepper[J]. Sci Hortic, 2021, 289: 110434.
doi: 10.1016/j.scienta.2021.110434 URL |
[56] |
Altaf MA, Shu HY, Hao YY, et al. Melatonin affects the photosynthetic performance of pepper(Capsicum annuum L.)seedlings under cold stress[J]. Antioxidants, 2022, 11(12): 2414.
doi: 10.3390/antiox11122414 URL |
[57] |
Karumannil S, Khan TA, Kappachery S, et al. Impact of exogenous melatonin application on photosynthetic machinery under abiotic stress conditions[J]. Plants, 2023, 12(16): 2948.
doi: 10.3390/plants12162948 URL |
[58] |
Liu XT, Wang YN, Feng YQ, et al. SlTDC1 overexpression promoted photosynthesis in tomato under chilling stress by improving CO2 assimilation and alleviating photoinhibition[J]. Int J Mol Sci, 2023, 24(13): 11042.
doi: 10.3390/ijms241311042 URL |
[59] |
Zhang HJ, Qiu YH, Ji YH, et al. Melatonin promotes seed germination via regulation of ABA signaling under low temperature stress in cucumber[J]. J Plant Growth Regul, 2023, 42(4): 2232-2245.
doi: 10.1007/s00344-022-10698-y |
[60] |
Ahmad S, Muhammad I, Wang GY, et al. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings[J]. BMC Plant Biol, 2021, 21(1): 368.
doi: 10.1186/s12870-021-03160-w pmid: 34384391 |
[61] |
Hussain Q, Asim M, Zhang R, et al. Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress[J]. Biomolecules, 2021, 11(8): 1159.
doi: 10.3390/biom11081159 URL |
[62] |
Li C, Tan DX, Liang D, et al. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress[J]. J Exp Bot, 2015, 66(3): 669-680.
doi: 10.1093/jxb/eru476 URL |
[63] |
Wei J, Li DX, Zhang JR, et al. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana[J]. J Pineal Res, 2018, 65(2): e12500.
doi: 10.1111/jpi.2018.65.issue-2 URL |
[64] |
Wang LF, Lu KK, Li TT, et al. Maize PHYTOMELATONIN RECEPTOR1 functions in plant tolerance to osmotic and drought stress[J]. J Exp Bot, 2022, 73(17): 5961-5973.
doi: 10.1093/jxb/erab553 URL |
[65] |
Zhang P, Hu Y, Zhou RJ, et al. The antioxidant system response to drought-stressed Diospyros lotus treated with exogenous melatonin[J]. Peer J, 2022, 10: e13936.
doi: 10.7717/peerj.13936 URL |
[66] |
He MM, Mei SY, Zhai YN, et al. Effects of melatonin on the growth of sugar beet(Beta vulgaris L.)seedlings under drought stress[J]. J Plant Growth Regul, 2023, 42(8): 5116-5130.
doi: 10.1007/s00344-022-10860-6 |
[67] |
Dai LL, Li J, Harmens H, et al. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed(Brassica napus L.)genotypes[J]. Plant Physiol Biochem, 2020, 149: 86-95.
doi: 10.1016/j.plaphy.2020.01.039 URL |
[68] |
Luo MZ, Wang DP, Delaplace P, et al. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat(Triticum aestivum L.)[J]. Plant Physiol Biochem, 2023, 202: 107974.
doi: 10.1016/j.plaphy.2023.107974 URL |
[69] |
Abbasi H, Jamil M, Haq A, et al. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review[J]. Zemdirbyste-Agriculture, 2016, 103(2): 229-238.
doi: 10.13080/z-a.2016.103.030 URL |
[70] |
Mohamadi Esboei M, Ebrahimi A, Amerian MR, et al. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content[J]. Front Plant Sci, 2022, 13: 890613.
doi: 10.3389/fpls.2022.890613 URL |
[71] |
Du PH, Yin BY, Cao Y, et al. Beneficial effects of exogenous melatonin and dopamine on low nitrate stress in Malus hupehensis[J]. Front Plant Sci, 2022, 12: 807472.
doi: 10.3389/fpls.2021.807472 URL |
[72] |
Guo XQ, Shi Y, Zhu GL, et al. Melatonin mitigated salinity stress on alfalfa by improving antioxidant defense and osmoregulation[J]. Agronomy, 2023, 13(7): 1727.
doi: 10.3390/agronomy13071727 URL |
[73] |
Chen L, Lu B, Liu LT, et al. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton(Gossypium hirsutum L.)[J]. Plant Physiol Biochem, 2021, 162: 506-516.
doi: 10.1016/j.plaphy.2021.03.029 URL |
[74] |
李帜奇, 袁月, 苗荣庆, 等. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0975 |
Li ZQ, Yuan Y, Miao RQ, et al. Melatonin contents in Eutrema salsugineum and Arabidopsis thaliana under salt stress, and expression pattern analysis of synthesis related genes[J]. Biotechnol Bull, 2023, 39(5): 142-151. | |
[75] |
魏茜雅, 秦中维, 梁腊梅, 等. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1253 |
Wei XY, Qin ZW, Liang LM, et al. Mechanism of melatonin seed priming in improving salt tolerance of Capsicum annuum[J]. Biotechnol Bull, 2023, 39(7): 160-172. | |
[76] | 尹兵兵, 潘凌云, 付畅. 逆境下植物MAPK级联途径基因的表达调控[J]. 分子植物育种, 2022, 20(10): 3257-3265. |
Yin BB, Pan LY, Fu C. Regulation of gene expression of plant MAPK cascade pathway under environmental stresses[J]. Mol Plant Breed, 2022, 20(10): 3257-3265. | |
[77] |
Li L, Yan XY. Insights into the roles of Melatonin in alleviating heavy metal toxicity in crop plants[J]. Phyton, 2021, 90(6): 1559-1572.
doi: 10.32604/phyton.2021.016692 URL |
[78] |
Hoque MN, Tahjib-Ul-Arif M, Hannan A, et al. Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms[J]. Int J Mol Sci, 2021, 22(21): 11445.
doi: 10.3390/ijms222111445 URL |
[79] |
Yang H, Fang R, Luo L, et al. Potential roles of melatonin in mitigating the heavy metals toxicity in horticultural plants[J]. Sci Hortic, 2023, 321: 112269.
doi: 10.1016/j.scienta.2023.112269 URL |
[80] |
Sun CL, Lv T, Huang L, et al. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat[J]. J Pineal Res, 2020, 68(4): e12642.
doi: 10.1111/jpi.v68.4 URL |
[81] |
Altaf MA, Hao YY, Shu HY, et al. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation[J]. J Hazard Mater, 2023, 454: 131468.
doi: 10.1016/j.jhazmat.2023.131468 URL |
[82] |
Raja V, Qadir SU, Kumar N, et al. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato[J]. Plant Physiol Biochem, 2023, 201: 107872.
doi: 10.1016/j.plaphy.2023.107872 URL |
[83] |
He JL, Zhuang XL, Zhou JT, et al. Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks[J]. Tree Physiol, 2020, 40(6): 746-761.
doi: 10.1093/treephys/tpaa024 pmid: 32159805 |
[84] |
Shi C, Liu HT. How plants protect themselves from ultraviolet-B radiation stress[J]. Plant Physiol, 2021, 187(3): 1096-1103.
doi: 10.1093/plphys/kiab245 pmid: 34734275 |
[85] |
Yao JW, Ma Z, Ma YQ, et al. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana[J]. Plant Cell Environ, 2021, 44(1): 114-129.
doi: 10.1111/pce.v44.1 URL |
[86] |
Haskirli H, Yilmaz O, Ozgur R, et al. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana[J]. Phytochemistry, 2021, 182: 112592.
doi: 10.1016/j.phytochem.2020.112592 pmid: 33316594 |
[87] |
Su C, Wang P, Wu J, et al. Effects of melatonin on the photosynthetic characteristics of Zanthoxylum armatum under waterlogging stress[J]. Russ J Plant Physiol, 2023, 70(4): 82.
doi: 10.1134/S1021443722602129 |
[88] |
Huo LQ, Wang HJ, Wang Q, et al. Exogenous treatment with melatonin enhances waterlogging tolerance of kiwifruit plants[J]. Front Plant Sci, 2022, 13: 1081787.
doi: 10.3389/fpls.2022.1081787 URL |
[89] |
陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1289 |
Chen HY, Li XE, Li ZG. Sugar signaling and its role in plant response to environmental stress[J]. Biotechnol Bull, 2022, 38(7): 80-89. | |
[90] | 李忠光, 龙维彪, 杨仕忠, 等. 硫化氢——从有毒气体到植物信号分子[J]. 云南师范大学学报: 自然科学版, 2022, 42(1): 1-10. |
Li ZG, Long WB, Yang SZ, et al. Hydrogen sulfide—from toxic gas to plant signaling molecule[J]. J Yunnan Norm Univ Nat Sci Ed, 2022, 42(1): 1-10. | |
[91] |
李忠光. 气体递质:古老气体在植物响应温度胁迫中的新角色[J]. 中国生物化学与分子生物学报, 2023, 39(7): 920-932.
doi: 10.13865/j.cnki.cjbmb.2023.06.1663 |
Li ZG. Gasotransmitters: novel roles of ancient gases in the plant response to temperature stress[J]. Chin J Biochem Mol Biol, 2023, 39(7): 920-932. |
[1] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[2] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[3] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[4] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[5] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[6] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[7] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[10] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[11] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[12] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[13] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
[14] | 程爽, ULAANDUU Namuun, 李卓琳, 胡海玲, 邓晓霞, 李月明, 王竞红, 蔺吉祥. 植物光系统 II(PSII)应答非生物胁迫机理研究进展[J]. 生物技术通报, 2023, 39(12): 33-42. |
[15] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||