生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 62-74.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0938
刘锐1,2(), 赵建龙2, 谢丙炎2, 李惠霞1(), 茆振川2()
收稿日期:
2023-10-06
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
李惠霞,博士,教授,研究方向:植物线虫学;E-mail: lihx@gsau.edu.cn;作者简介:
刘锐,博士研究生,研究方向:根结线虫致病机理;E-mail: 18404983798@163.com
基金资助:
LIU Rui1,2(), ZHAO Jian-long2, XIE Bing-yan2, LI Hui-xia1(), MAO Zhen-chuan2()
Received:
2023-10-06
Published:
2024-03-26
Online:
2024-04-08
摘要:
根结线虫(Meloidogyne spp.)是一种专性寄生线虫,具有分布广泛、寄主繁多和危害严重的特点。每年给农作物造成巨大的经济损失,是危害农作物最严重的线虫之一。侵染植物时,根结线虫会诱导根尖部位的维管束细胞重新分化形成多核的巨型细胞,将其作为线虫的取食位点和线虫生长发育过程中营养物质的唯一来源。因此,巨型细胞的形成和维持对线虫的生长和繁殖至关重要。本文从根结线虫诱导寄主植物巨型细胞的形成及调控机制,重点介绍了巨型细胞的结构特征、巨型细胞的细胞周期变化、营养物质运输、激素调节,以及寄主植物的识别和防御和表达模式,并探讨了根结线虫效应蛋白在巨型细胞形成过程中的功能。通过对巨型细胞形成和调控机制及线虫-植物相互分子机制等多层次的研究进展进行解析,揭示根结线虫的致病机理,以期为后续研究根结线虫防治创新性策略提供启发和思路。
刘锐, 赵建龙, 谢丙炎, 李惠霞, 茆振川. 根结线虫诱导的巨型细胞及其形成机制[J]. 生物技术通报, 2024, 40(3): 62-74.
LIU Rui, ZHAO Jian-long, XIE Bing-yan, LI Hui-xia, MAO Zhen-chuan. Giant Cells Induced by Root-knot Nematodes and Its Formation Mechanisms[J]. Biotechnology Bulletin, 2024, 40(3): 62-74.
效应蛋白Effector | 靶标线虫Target nematode | 功能(巨型细胞相关)Function(Giant cell correlation) | 参考文献Reference |
---|---|---|---|
Mj-pel-1 | 爪哇根结线虫 | 参与细胞壁:对果胶有高活性,侵染初期起重要作用 | [ |
Mi-CRT | 南方根结线虫 | 细胞骨架:取食位点周围的巨型细胞中聚集,影响线虫寄生 | [ |
MiPFN3 | 南方根结线虫 | 细胞骨架:调节巨型细胞内肌动蛋白的多聚化 | [ |
Mi8D05/Msp9 | 北方根结线虫 南方根结线虫 | 物质运输:调节巨型细胞内溶质和水分子的运输 | [ |
MJ-NULG1a | 爪哇根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF1 | 南方根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF18 | 南方根结线虫 | 细胞核:诱导植物根细胞再分化为巨型细胞 | [ |
Mi2G02 | 南方根结线虫 | 细胞核:参与调控根长和线虫取食细胞的发育 | [ |
CM-1/CM-2 | 南方根结线虫 爪哇根结线虫 | 激素调节:参与巨型细胞的分化和取食位点的形成,MjCM-1减少吲哚乙酸的合成影响细胞发育 | [ |
FAR-1 | 爪哇根结线虫 南方根结线虫 | 细胞代谢:促进巨型细胞和线虫发育 | [ |
Mi-SBP-1 | 南方根结线虫 | 细胞代谢:参与巨型细胞中脂酸的合成 | [ |
MeMSP1 | 象耳豆根结线虫 | 细胞代谢:定位在巨型细胞中,影响谷胱甘肽的积累,有利于线虫寄生 | [ |
16D10/Msp16 | 北方根结线虫 南方根结线虫 | 转录调控:诱导巨型细胞和取食位点形成中发挥作用 | [ |
表1 根结线虫中已报道参与巨型细胞相关效应蛋白
Table1 Reported relevant giant cell-associated effectors in root-knot nematodes
效应蛋白Effector | 靶标线虫Target nematode | 功能(巨型细胞相关)Function(Giant cell correlation) | 参考文献Reference |
---|---|---|---|
Mj-pel-1 | 爪哇根结线虫 | 参与细胞壁:对果胶有高活性,侵染初期起重要作用 | [ |
Mi-CRT | 南方根结线虫 | 细胞骨架:取食位点周围的巨型细胞中聚集,影响线虫寄生 | [ |
MiPFN3 | 南方根结线虫 | 细胞骨架:调节巨型细胞内肌动蛋白的多聚化 | [ |
Mi8D05/Msp9 | 北方根结线虫 南方根结线虫 | 物质运输:调节巨型细胞内溶质和水分子的运输 | [ |
MJ-NULG1a | 爪哇根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF1 | 南方根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF18 | 南方根结线虫 | 细胞核:诱导植物根细胞再分化为巨型细胞 | [ |
Mi2G02 | 南方根结线虫 | 细胞核:参与调控根长和线虫取食细胞的发育 | [ |
CM-1/CM-2 | 南方根结线虫 爪哇根结线虫 | 激素调节:参与巨型细胞的分化和取食位点的形成,MjCM-1减少吲哚乙酸的合成影响细胞发育 | [ |
FAR-1 | 爪哇根结线虫 南方根结线虫 | 细胞代谢:促进巨型细胞和线虫发育 | [ |
Mi-SBP-1 | 南方根结线虫 | 细胞代谢:参与巨型细胞中脂酸的合成 | [ |
MeMSP1 | 象耳豆根结线虫 | 细胞代谢:定位在巨型细胞中,影响谷胱甘肽的积累,有利于线虫寄生 | [ |
16D10/Msp16 | 北方根结线虫 南方根结线虫 | 转录调控:诱导巨型细胞和取食位点形成中发挥作用 | [ |
[1] | 金娜, 陈永攀, 刘倩, 等. 我国蔬菜根结线虫发生、致害和绿色防控研究进展[J]. 植物保护学报, 2022, 49(1): 424-438. |
Jin N, Chen YP, Liu Q, et al. Research progresses in occurrence, diagnoses, pathogenic mechanisms and integrated management of vegetable root-knot nematodes in China[J]. J Plant Prot, 2022, 49(1): 424-438. | |
[2] |
Forghani F, Hajihassani A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Front Plant Sci, 2020, 11: 1125.
doi: 10.3389/fpls.2020.01125 pmid: 32793271 |
[3] |
Jones JT, Haegeman A, Danchin EGJ, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[4] | 彭德良. 植物线虫病害:我国粮食安全面临的重大挑战[J]. 生物技术通报, 2021, 37(7): 1-2. |
Peng DL. Plant nematode diseases: serious challenges to China's food security[J]. Biotechnol Bull, 2021, 37(7): 1-2. | |
[5] | 杨芳, 徐幸, 郭荣, 等. 中国北方稻田及其周边环境中根结线虫种类鉴定[J]. 西北农林科技大学学报:自然科学版, 2024, 52(1): 1-11. |
Yang F, Xu X, Guo R, et al. Identification of root-knot nematode species from paddy field and surrounding environment in northern China[J]. Journal of Northwest A&F University Natural Science Edition, 2024, 52(1): 1-11. | |
[6] |
Khan A, Khan A, Ali A, et al. Root-knot nematodes(Meloidogyne spp.): biology, plant-nematode interactions and their environmentally benign management strategies[J]. Gesunde Pflanz, 2023, 75(6): 2187-2205.
doi: 10.1007/s10343-023-00886-5 |
[7] |
Abad P, Gouzy J, Aury JM, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nat Biotechnol, 2008, 26(8): 909-915.
doi: 10.1038/nbt.1482 |
[8] | Moens M, Perry RN, Starr JL. Meloidogyne species - a diverse group of novel and important plant parasites[M]//Root-knot nematodes. UK: CABI, 2009: 1-17. |
[9] |
Sijmons PC, Atkinson HJ, Wyss U. Parasitic strategies of root nematodes and associated host cell responses[J]. Annu Rev Phytopathol, 1994, 32: 235-259.
doi: 10.1146/phyto.1994.32.issue-1 URL |
[10] | Escobar C, Barcala M, Cabrera J, et al. Overview of root-knot nematodes and giant cells[J]. Adv Bot Res, 2015, 73: 1-32. |
[11] |
Holbein J, Franke RB, Marhavý P, et al. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes[J]. Plant J, 2019, 100(2): 221-236.
doi: 10.1111/tpj.14459 |
[12] |
Bird AF. The ultrastructure and histochemistry of a nematode-induced giant cell[J]. J Biophys Biochem Cytol, 1961, 11(3): 701-715.
doi: 10.1083/jcb.11.3.701 URL |
[13] |
Huang CS, Maggenti AR. Wall modifications in developing giant cells of Vicia faba and Cucumis sativus induced by root knot nematode, Meloidogyne javanica[J]. Phytopathology, 1969, 59(7): 931-937.
pmid: 5799564 |
[14] |
Caillaud MC, Dubreuil G, Quentin M, et al. Root-knot nematodes manipulate plant cell functions during a compatible interaction[J]. J Plant Physiol, 2008, 165(1): 104-113.
doi: 10.1016/j.jplph.2007.05.007 URL |
[15] |
Rodiuc N, Vieira P, Banora MY, et al. On the track of transfer cell formation by specialized plant-parasitic nematodes[J]. Front Plant Sci, 2014, 5: 160.
doi: 10.3389/fpls.2014.00160 pmid: 24847336 |
[16] |
de Almeida Engler J, Van Poucke K, Karimi M, et al. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots[J]. Plant J, 2004, 38(1): 12-26.
doi: 10.1111/j.1365-313X.2004.02019.x pmid: 15053756 |
[17] | Jones MGK, Goto DB. Root-knot nematodes and giant cells[M]// Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer, 2011: 83-100. |
[18] |
Jones MGK, Northcote DH. Multinucleate transfer cells induced in coleus roots by the root-knot nematode, Meloidogyne arenar-ia[J]. Protoplasma, 1972, 75(4): 381-395.
doi: 10.1007/BF01282117 URL |
[19] | Berg RH, Fester T, Taylor CG. Development of the root-knot nematode feeding cell[M]// Cell Biology of Plant Nematode Parasitism. Berlin, Heidelberg: Springer, 2009: 115-152. |
[20] |
Jones MGK, Novacky A, Dropkin VH. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells[J]. Protoplasma, 1975, 85(1): 15-37.
doi: 10.1007/BF01567756 URL |
[21] |
Paulson RE, Webster JM. Giant cell formation in tomato roots caused by Meloidogyne incognita and Meloidogyne hapla(Nematoda)infection. A light and electron microscope study[J]. Can J Bot, 1970, 48(2): 271-276.
doi: 10.1139/b70-041 URL |
[22] |
Jones MGK, Gunning BES. Transfer cells and nematode induced giant cells in Helianthemum[J]. Protoplasma, 1976, 87(1): 273-279.
doi: 10.1007/BF01623973 URL |
[23] |
Suzuki R, Yamada M, Higaki T, et al. PUCHI regulates giant cell morphology during root-knot nematode infection in Arabidopsis thaliana[J]. Front Plant Sci, 2021, 12: 755610.
doi: 10.3389/fpls.2021.755610 URL |
[24] |
Barcala M, García A, Cabrera J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells[J]. Plant J, 2010, 61(4): 698-712.
doi: 10.1111/tpj.2010.61.issue-4 URL |
[25] | Laura C H. Analysis of cell wall synthesis genes in feeding cells formed by root-knot nematodes[D]. Raleigh: North Carolina State University, 2008. |
[26] |
Smith RC, Fry SC. Endotransglycosylation of xyloglucans in plant cell suspension cultures[J]. Biochem J, 1991, 279: 529-535.
doi: 10.1042/bj2790529 URL |
[27] |
Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule[J]. J Biol Chem, 1992, 267(29): 21058-21064.
pmid: 1400418 |
[28] |
Baldacci-Cresp F, Behr M, Kohler A, et al. Molecular changes concomitant with vascular system development in mature galls induced by root-knot nematodes in the model tree host Populus tremula×P. alba[J]. Int J Mol Sci, 2020, 21(2): 406.
doi: 10.3390/ijms21020406 URL |
[29] |
Jammes F, Lecomte P, de Almeida-Engler J, et al. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis[J]. Plant J, 2005, 44(3): 447-458.
doi: 10.1111/tpj.2005.44.issue-3 URL |
[30] |
Kende H, Bradford K, Brummell D, et al. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Mol Biol, 2004, 55(3): 311-314.
doi: 10.1007/s11103-004-0158-6 pmid: 15604683 |
[31] |
Kost B, Spielhofer P, Chua NH. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes[J]. Plant J, 1998, 16(3): 393-401.
doi: 10.1046/j.1365-313x.1998.00304.x pmid: 9881160 |
[32] |
Caillaud MC, Lecomte P, Jammes F, et al. MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis[J]. Plant Cell, 2008, 20(2): 423-437.
doi: 10.1105/tpc.107.057422 URL |
[33] | de Almeida Engler J, Favery B. The plant cytoskeleton remodelling in nematode induced feeding sites[M]// Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer, 2011: 369-393. |
[34] |
Staiger CJ, Blanchoin L. Actin dynamics: old friends with new stories[J]. Curr Opin Plant Biol, 2006, 9(6): 554-562.
doi: 10.1016/j.pbi.2006.09.013 pmid: 17011229 |
[35] |
Clément M, Ketelaar T, Rodiuc N, et al. Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis[J]. Plant Cell, 2009, 21(9): 2963-2979.
doi: 10.1105/tpc.109.069104 URL |
[36] |
Bird AF. Quantitative studies on the growth of syncytia induced in plants by root knot nematodes[J]. Int J Parasitol, 1972, 2(1): 157-170.
doi: 10.1016/0020-7519(72)90043-4 URL |
[37] |
Hammes UZ, Schachtman DP, Berg RH, et al. Nematode-induced changes of transporter gene expression in Arabidopsis roots[J]. Mol Plant Microbe Interact, 2005, 18(12): 1247-1257.
doi: 10.1094/MPMI-18-1247 URL |
[38] |
Opperman CH, Taylor CG, Conkling MA. Root-knot nematode—directed expression of a plant root—specific gene[J]. Science, 1994, 263(5144): 221-223.
doi: 10.1126/science.263.5144.221 pmid: 17839183 |
[39] | Gheysen G, Mitchum MG. Molecular insights in the susceptible plant response to nematode infection[M]//Plant Cell Monographs. Berlin, Heidelberg: Springer, 2008, 15:45-81. |
[40] |
Starr JL. Dynamics of the nuclear complement of giant cells induced by Meloidogyne incognita[J]. J Nematol, 1993, 25(3): 416-421.
pmid: 19279788 |
[41] |
Jones MG, Payne HL. Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina[J]. J Nematol, 1978, 10(1): 70-84.
pmid: 19305816 |
[42] |
Niebel A, de Almeida Engler J, Hemerly A, et al. Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation[J]. Plant J, 1996, 10(6): 1037-1043.
pmid: 9011085 |
[43] |
de Almeida Engler J, De Vleesschauwer V, Burssens S, et al. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia[J]. Plant Cell, 1999, 11(5): 793-808.
doi: 10.1105/tpc.11.5.793 pmid: 10330466 |
[44] |
Favery B, Complainville A, Vinardell JM, et al. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula[J]. Mol Plant Microbe Interact, 2002, 15(10): 1008-1013.
doi: 10.1094/MPMI.2002.15.10.1008 URL |
[45] |
Verkest A, Manes CL, Vercruysse S, et al. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes[J]. Plant Cell, 2005, 17(6): 1723-1736.
pmid: 15863515 |
[46] |
Van de Cappelle E, Plovie E, Kyndt T, et al. AtCDKA;1 silencing in Arabidopsis thaliana reduces reproduction of sedentary plant-parasitic nematodes[J]. Plant Biotechnol J, 2008, 6(8): 749-757.
doi: 10.1111/j.1467-7652.2008.00355.x pmid: 18554267 |
[47] |
Vieira P, Escudero C, Rodiuc N, et al. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion[J]. New Phytol, 2013, 199(2): 505-519.
doi: 10.1111/nph.12255 pmid: 23574394 |
[48] |
Vieira P, De Clercq A, Stals H, et al. The cyclin-dependent kinase inhibitor KRP6 induces mitosis and impairs cytokinesis in giant cells induced by plant-parasitic nematodes in Arabidopsis[J]. Plant Cell, 2014, 26(6): 2633-2647.
doi: 10.1105/tpc.114.126425 URL |
[49] |
de Almeida Engler J, Gheysen G. Nematode-induced endoreduplication in plant host cells: why and how?[J]. Mol Plant Microbe Interact, 2013, 26(1): 17-24.
doi: 10.1094/MPMI-05-12-0128-CR URL |
[50] |
Paganelli L, Caillaud MC, Quentin M, et al. Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis[J]. New Phytol, 2015, 205(1): 202-215.
doi: 10.1111/nph.13073 pmid: 25262777 |
[51] |
Fuller VL, Lilley CJ, Atkinson HJ, et al. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii[J]. Mol Plant Pathol, 2007, 8(5): 595-609.
doi: 10.1111/mpp.2007.8.issue-5 URL |
[52] | 许立鹤. 水稻地上部分蔗糖向拟禾本科根结线虫取食位点运输的机制研究[D]. 武汉: 华中农业大学, 2021. |
Xu LH. Mechanisms of sucrose supply from aboveground parts of rice to feeding sites of Meloidogyne graminicola[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[53] |
Hofmann J, Grundler F. How do nematodes get their sweets? Solute supply to sedentary plant-parasitic nematodes[J]. Nematology, 2007, 9(4): 451-458.
doi: 10.1163/156854107781487305 URL |
[54] |
Gheysen G, Mitchum MG. Phytoparasitic nematode control of plant hormone pathways[J]. Plant Physiol, 2019, 179(4): 1212-1226.
doi: 10.1104/pp.18.01067 pmid: 30397024 |
[55] |
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions[J]. Trends Plant Sci, 2012, 17(5): 250-259.
doi: 10.1016/j.tplants.2012.01.003 pmid: 22305233 |
[56] |
Tooker JF, Helms AM. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit[J]. J Chem Ecol, 2014, 40(7): 742-753.
doi: 10.1007/s10886-014-0457-6 pmid: 25027764 |
[57] |
黄文坤, 于敬文, 贾建平, 等. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0332 |
Huang WK, Yu JW, Jia JP, et al. Effects of plant hormones on the establishment and development of plant parasitic nematodes’ feeding sites[J]. Biotechnol Bull, 2021, 37(7): 56-64. | |
[58] |
Hutangura P, Mathesius U, Jones MGK, et al. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway[J]. Funct Plant Biol, 1999, 26(3): 221-231.
doi: 10.1071/PP98157 URL |
[59] |
Cabrera J, Barcala M, García A, et al. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs[J]. New Phytol, 2016, 209(4): 1625-1640.
doi: 10.1111/nph.13735 pmid: 26542733 |
[60] |
Cabrera J, Fenoll C, Escobar C. Genes co-regulated with LBD16 in nematode feeding sites inferred from in silico analysis show similarities to regulatory circuits mediated by the auxin/cytokinin balance in Arabidopsis[J]. Plant Signal Behav, 2015, 10(3): e990825.
doi: 10.4161/15592324.2014.990825 URL |
[61] |
Bird AF, Loveys BR. The involvement of cytokinins in a host-parasite relationship between the tomato(Lycopersicon esculentum)and a nematode(Meloidogyne javanica)[J]. Parasitology, 1980, 80(3): 497-505.
doi: 10.1017/S0031182000000962 URL |
[62] |
Lohar DP, Schaff JE, Laskey JG, et al. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses[J]. Plant J, 2004, 38(2): 203-214.
pmid: 15078325 |
[63] |
Cabrera J, Díaz-Manzano FE, Sanchez M, et al. A role for lateral organ boundaries-domain 16 during the interaction Arabidop-sis-Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development[J]. New Phytol, 2014, 203(2): 632-645.
doi: 10.1111/nph.12826 pmid: 24803293 |
[64] |
Giazer I, Orion D, Apelbaum A. Interrelationships between ethylene production, gall formation, and root-knot nematode development in tomato plants infected with Meloidogyne javanica[J]. J Nematol, 1983, 15(4): 539-544.
pmid: 19295844 |
[65] |
Nahar K, Kyndt T, et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiol, 2011, 157(1): 305-316.
doi: 10.1104/pp.111.177576 pmid: 21715672 |
[66] |
Fudali SL, Wang CL, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla[J]. Mol Plant Microbe Interact, 2013, 26(1): 75-86.
doi: 10.1094/MPMI-05-12-0107-R URL |
[67] |
Mantelin S, Bhattarai KK, et al. Mi-1-mediated resistance to Meloi-dogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host[J]. PLoS One, 2013, 8(5): e63281.
doi: 10.1371/journal.pone.0063281 URL |
[68] |
Shukla N, Yadav R, et al. Transcriptome analysis of root-knot nema-tode(Meloidogyne incognita)-infected tomato(Solanum lycoper-sicum)roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses[J]. Mol Plant Pathol, 2018, 19(3): 615-633.
doi: 10.1111/mpp.12547 pmid: 28220591 |
[69] |
Ji HL, Gheysen G, Denil S, et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminico-la in rice roots[J]. J Exp Bot, 2013, 64(12): 3885-3898.
doi: 10.1093/jxb/ert219 URL |
[70] |
Priya DB, Somasekhar N, Prasad J, et al. Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita[J]. BMC Res Notes, 2011, 4: 231.
doi: 10.1186/1756-0500-4-231 |
[71] |
Youssef RM, MacDonald MH, Brewer EP, et al. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes[J]. BMC Plant Biol, 2013, 13: 67.
doi: 10.1186/1471-2229-13-67 pmid: 23617694 |
[72] |
Favery B, Quentin M, Jaubert-Possamai S, et al. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells[J]. J Insect Physiol, 2016, 84: 60-69.
doi: S0022-1910(15)00161-4 pmid: 26211599 |
[73] |
Chakraborty N, Basak J. Exogenous application of methyl jasmonate induces defense response and develops tolerance against mungbean yellow mosaic India virus in Vigna mungo[J]. Funct Plant Biol, 2018, 46(1): 69-81.
doi: 10.1071/FP18168 pmid: 30939259 |
[74] |
Nahar K, et al. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Mol Plant Microbe Interact, 2013, 26(1): 106-115.
doi: 10.1094/MPMI-05-12-0108-FI URL |
[75] |
Chen SY, Lang P, Chronis D, et al. In planta processing and glycosylation of a nematode clavata3/endosperm surrounding region-like effector and its interaction with a host clavata2-like receptor to promote parasitism[J]. Plant Physiol, 2015, 167(1): 262-272.
doi: 10.1104/pp.114.251637 pmid: 25416475 |
[76] |
Cabrera J, Barcala M, Fenoll C, et al. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabi-dopsis focused on auxin and ethylene signaling[J]. Front Plant Sci, 2014, 5: 107.
doi: 10.3389/fpls.2014.00107 pmid: 24715895 |
[77] | 姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. |
Yao K, Zheng JW, Huang WK, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathol Sin, 2020, 50(5): 517-530. | |
[78] |
Haegeman A, Mantelin S, Jones JT, et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene, 2012, 492(1): 19-31.
doi: 10.1016/j.gene.2011.10.040 pmid: 22062000 |
[79] |
Yamaguchi YL, Suzuki R, Cabrera J, et al. Root-knot and cyst nematodes activate procambium-associated genes in Arabidopsis roots[J]. Front Plant Sci, 2017, 8: 1195.
doi: 10.3389/fpls.2017.01195 pmid: 28747918 |
[80] |
Schaff JE, Nielsen DM, Smith CP, et al. Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance[J]. Plant Physiol, 2007, 144(2): 1079-1092.
doi: 10.1104/pp.106.090241 pmid: 17434994 |
[81] |
Portillo M, Lindsey K, Casson S, et al. Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis[J]. Mol Plant Pathol, 2009, 10(4): 523-535.
doi: 10.1111/j.1364-3703.2009.00552.x pmid: 19523105 |
[82] |
Das S, Ehlers JD, Close TJ, et al. Transcriptional profiling of root-knot nematode induced feeding sites in cowpea(Vigna unguicula-ta L. Walp.)using a soybean genome array[J]. BMC Genomics, 2010, 11: 480.
doi: 10.1186/1471-2164-11-480 |
[83] |
Kyndt T, Denil S, Haegeman A, et al. Transcriptional reprogramming by root knot and migratory nematode infection in rice[J]. New Phytol, 2012, 196(3): 887-900.
doi: 10.1111/j.1469-8137.2012.04311.x pmid: 22985291 |
[84] |
Sato K, Uehara T, Holbein J, et al. Transcriptomic analysis of resistant and susceptible responses in a new model root-knot nematode infection system using Solanum torvum and Meloidogyne arenar-ia[J]. Front Plant Sci, 2021, 12: 680151.
doi: 10.3389/fpls.2021.680151 URL |
[85] |
Zhu YC, Yuan GP, Zhao RZ, et al. Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible watermelon varieties in response to Meloidogyne incognita[J]. Life, 2022, 12(7): 1003.
doi: 10.3390/life12071003 URL |
[86] |
Djian-Caporalino C, Pijarowski L, Januel A, et al. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in in pepper(Capsicum annuum L.)[J]. Theor Appl Genet, 1999, 99(3/4): 496-502.
doi: 10.1007/s001220051262 URL |
[87] |
de Souza-Sobrinho F, Maluf WR, Gomes LAA, et al. Inheritance of resistance to Meloidogyne incognita race 2 in the hot pepper cultivar Carolina Cayenne(Capsicum annuum L.)[J]. Genet Mol Res, 2002, 1(3): 271-279.
pmid: 14963835 |
[88] |
Melillo MT, Leonetti P, Bongiovanni M, et al. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions[J]. New Phytol, 2006, 170(3): 501-512.
doi: 10.1111/j.1469-8137.2006.01724.x pmid: 16626472 |
[89] |
Damiani I, Baldacci-Cresp F, Hopkins J, et al. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes[J]. New Phytol, 2012, 194(2): 511-522.
doi: 10.1111/j.1469-8137.2011.04046.x pmid: 22360638 |
[90] |
Bellafiore S, Shen ZX, et al. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential[J]. PLoS Pathog, 2008, 4(10): e1000192.
doi: 10.1371/journal.ppat.1000192 URL |
[91] |
Vieira P, Gleason C. Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification[J]. Curr Opin Plant Biol, 2019, 50: 37-43.
doi: S1369-5266(18)30113-4 pmid: 30921686 |
[92] |
Toruño TY, Stergiopoulos I, Coaker G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners[J]. Annu Rev Phytopathol, 2016, 54: 419-441.
doi: 10.1146/annurev-phyto-080615-100204 pmid: 27359369 |
[93] |
Mejias J, Truong NM, Abad P, et al. Plant proteins and processes targeted by parasitic nematode effectors[J]. Front Plant Sci, 2019, 10: 970.
doi: 10.3389/fpls.2019.00970 pmid: 31417587 |
[94] |
Jagdale S, Rao U, Giri AP. Effectors of root-knot nematodes: an arsenal for successful parasitism[J]. Front Plant Sci, 2021, 12: 800030.
doi: 10.3389/fpls.2021.800030 URL |
[95] |
Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells[J]. Front Plant Sci, 2013, 4: 53.
doi: 10.3389/fpls.2013.00053 pmid: 23493679 |
[96] |
Doyle EA, Lambert KN. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica[J]. Mol Plant Microbe Interact, 2002, 15(6): 549-556.
doi: 10.1094/MPMI.2002.15.6.549 URL |
[97] |
Jaubert S, Milac AL, Petrescu AJ, et al. In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode[J]. Mol Plant Microbe Interact, 2005, 18(12): 1277-1284.
doi: 10.1094/MPMI-18-1277 URL |
[98] |
Leelarasamee N, Zhang L, Gleason C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J]. PLoS Pathog, 2018, 14(3): e1006947.
doi: 10.1371/journal.ppat.1006947 URL |
[99] |
Xue BY, Hamamouch N, Li CY, et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J]. Phytopathology, 2013, 103(2): 175-181.
doi: 10.1094/PHYTO-07-12-0173-R URL |
[100] |
Lin BR, Zhuo K, Wu P, et al. A novel effector protein, MJ-NULG1a, targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism[J]. Mol Plant Microbe Interact, 2013, 26(1): 55-66.
doi: 10.1094/MPMI-05-12-0114-FI URL |
[101] |
Jaouannet M, Perfus-Barbeoch L, Deleury E, et al. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei[J]. New Phytol, 2012, 194(4): 924-931.
doi: 10.1111/j.1469-8137.2012.04164.x pmid: 22540860 |
[102] |
Truong NM, Chen YP, Mejias J, et al. The Meloidogyne incogni-ta nuclear effector MiEFF1 interacts with Arabidopsis cytosolic glyceraldehyde-3-phosphate dehydrogenases to promote parasitism[J]. Front Plant Sci, 2021, 12: 641480.
doi: 10.3389/fpls.2021.641480 URL |
[103] |
Mejias J, Chen YP, Bazin J, et al. Silencing the conserved small nuclear ribonucleoprotein SmD1 target gene alters susceptibility to root-knot nematodes in plants[J]. Plant Physiol, 2022, 189(3): 1741-1756.
doi: 10.1093/plphys/kiac155 pmid: 35385078 |
[104] |
Mejias J, Bazin J, Truong NM, et al. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation[J]. New Phytol, 2021, 229(6): 3408-3423.
doi: 10.1111/nph.17089 pmid: 33206370 |
[105] | Zhao JL, et al. The root-knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor to promote nematode parasitism[J]. Plant Commun, 2023: 100723. |
[106] | Huang GZ, Dong RH, Allen R, et al. Two chorismate mutase genes from the root-knot nematode Meloidogyne incognita[J]. Mol Plant Pathol, 2005, 6(1): 23-30. |
[107] |
Doyle EA, Lambert KN. Meloidogyne javanica chorismate mutase 1 alters plant cell development[J]. Mol Plant Microbe Interact, 2003, 16(2): 123-131.
doi: 10.1094/MPMI.2003.16.2.123 URL |
[108] |
Iberkleid I, Vieira P, de Almeida Engler J, et al. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes[J]. PLoS One, 2013, 8(5): e64586.
doi: 10.1371/journal.pone.0064586 URL |
[109] |
Phani V, Shivakumara TN, Davies KG, et al. Meloidogyne incog-nita fatty acid- and retinol- binding protein(mi-FAR-1)affects nematode infection of plant roots and the attachment of Pasteuria penetrans endospores[J]. Front Microbiol, 2017, 8: 2122.
doi: 10.3389/fmicb.2017.02122 URL |
[110] |
Shivakumara TN, Somvanshi VS, Phani V, et al. Meloidogyne in-cognita(Nematoda: Meloidogynidae)sterol-binding protein Mi-SBP-1 as a target for its management[J]. Int J Parasitol, 2019, 49(13/14): 1061-1073.
doi: 10.1016/j.ijpara.2019.09.002 URL |
[111] |
Chen YP, Liu Q, Sun XQ, et al. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism[J]. New Phytol, 2023, 240(6): 2468-2483.
doi: 10.1111/nph.v240.6 URL |
[112] |
Huang GZ, Dong RH, Allen R, et al. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor[J]. Mol Plant Microbe Interact, 2006, 19(5): 463-470.
doi: 10.1094/MPMI-19-0463 URL |
[113] |
Gorny AM, Wang XH, Hay FS, et al. Development of a species-specific PCR for detection and quantification of Meloido-gyne hapla in soil using the 16D10 root-knot nematode effector gene[J]. Plant Dis, 2019, 103(8): 1902-1909.
doi: 10.1094/PDIS-09-18-1539-RE URL |
[114] |
Long HB, Peng H, Huang WK, et al. Identification and molecular characterization of a new β-1, 4-endoglucanase gene(Ha-eng-1a)in the cereal cyst nematode Heterodera avenae[J]. Eur J Plant Pathol, 2012, 134(2): 391-400.
doi: 10.1007/s10658-012-9997-1 URL |
[115] |
Gal TZ, Aussenberg ER, Burdman S, et al. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato[J]. Planta, 2006, 224(1): 155-162.
doi: 10.1007/s00425-005-0204-x pmid: 16395582 |
[116] |
Hewezi T, Baum TJ. Manipulation of plant cells by cyst and root-knot nematode effectors[J]. Mol Plant Microbe Interact, 2013, 26(1): 9-16.
doi: 10.1094/MPMI-05-12-0106-FI URL |
[117] |
Rutter WB, Franco J, Gleason C. Rooting out the mechanisms of root-knot nematode-plant interactions[J]. Annu Rev Phytopathol, 2022, 60: 43-76.
doi: 10.1146/annurev-phyto-021621-120943 pmid: 35316614 |
[118] | 王远征, 彭德良, 刘晨, 等. 南方根结线虫效应因子功能的研究进展[J]. 生命科学, 2020, 32(4): 403-412. |
Wang YZ, Peng DL, Liu C, et al. Overview of the molecular function of Meloidogyne incognita effectors[J]. Chin Bull Life Sci, 2020, 32(4): 403-412. | |
[119] |
Tytgat T, Vanholme B, De Meutter J, et al. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes[J]. Mol Plant Microbe Interact, 2004, 17(8): 846-852.
doi: 10.1094/MPMI.2004.17.8.846 URL |
[120] |
Olmo R, Cabrera J, Díaz-Manzano FE, et al. Root-knot nematodes induce gall formation by recruiting developmental pathways of post-embryonic organogenesis and regeneration to promote transient pluripotency[J]. New Phytol, 2020, 227(1): 200-215.
doi: 10.1111/nph.16521 pmid: 32129890 |
[1] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[2] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[3] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[4] | 金娜, 王学艳, 刘倩, 彭德良, 彭焕, 简恒. 土壤生物熏蒸对蔬菜根结线虫及土壤线虫群落的影响[J]. 生物技术通报, 2021, 37(7): 156-163. |
[5] | 舒洁, 张仁军, 梁应冲, 陈雅琼, 张娟, 郭建, 陈穗云. 植物源与微生物源生物制剂复配防治根结线虫病[J]. 生物技术通报, 2021, 37(7): 164-174. |
[6] | 张洁, 夏明聪, 朱文倩, 梁娟, 孙润红, 徐文, 武超, 杨丽荣. 蔬菜根结线虫生防芽胞杆菌的筛选及作用机理研究[J]. 生物技术通报, 2021, 37(7): 175-182. |
[7] | 邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34. |
[8] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
[9] | 赵洪海, 梁晨, 张浴, 段方猛, 宋雯雯, 史倩倩, 黄文坤, 彭德良. 腐烂茎线虫(Ditylenchus destructor Thorne,1945)生物学研究进展[J]. 生物技术通报, 2021, 37(7): 45-55. |
[10] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[11] | 李治文, 刘培燕, 陈建松, 廖金铃, 林柏荣, 卓侃. 线虫效应子MgMO237及互作蛋白OsCRRSP55在水稻中的共响应基因鉴定[J]. 生物技术通报, 2021, 37(7): 88-97. |
[12] | 张雅静, 宋美燕, 张怡静, 房庆, 杨俊, 彭德良, 黄文坤, 彭焕, 朱英波, 孔令安. 兼防黄瓜根腐病和根结线虫病的淡紫拟青霉和哈茨木霉的筛选[J]. 生物技术通报, 2021, 37(2): 40-50. |
[13] | 石超南, 杨振, 丁作美, 张超, 吴建国. 水稻草矮病毒的研究进展[J]. 生物技术通报, 2018, 34(2): 45-53. |
[14] | 徐海冬, 冷奇颖, PATRICIAAdu-Asiamah, 王章, 李婷, 张丽. 环状RNA的特征及其在畜禽中的研究进展[J]. 生物技术通报, 2018, 34(11): 56-69. |
[15] | 关桂静, 赵恒燕, 王洪苏, 刘金香. 病毒-植物互作对介体昆虫生物学特性的影响[J]. 生物技术通报, 2017, 33(4): 44-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||