生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 143-151.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0064
黄秋1,2,3(), 刘静1,2,3, 秦樊鑫1,2,3(), 罗帮林4, 罗林1,2,3, 李宛蔚1,2,3, 徐安琪1,2,3
收稿日期:
2024-01-16
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
秦樊鑫,男,博士,教授,研究方向:生态环境污染控制与恢复;E-mail: qinfanxin@126.com作者简介:
黄秋,女,硕士研究生,研究方向:恢复生态学;E-mail: 3349431037@qq.com
基金资助:
HUANG Qiu1,2,3(), LIU Jing1,2,3, QIN Fan-xin1,2,3(), LUO Bang-lin4, LUO Lin1,2,3, LI Wan-yu1,2,3, XU An-qi1,2,3
Received:
2024-01-16
Published:
2024-06-26
Online:
2024-06-24
摘要:
【目的】 研究锌硒配施对土壤-水稻体系中水稻富集转运汞的影响,探讨锌硒配施对水稻汞的阻隔效应,为汞污染土壤安全利用提供参考。【方法】 选取贵州铜仁碧江区某矿区汞污染土壤,以水稻品种川康优727为研究对象,采用盆栽试验,测定水稻生长发育特征以及土壤有效汞和水稻各器官汞含量。【结果】 锌硒配施使土壤中有效汞含量显著降低了45%-75.2%,低浓度硒与锌配施使土壤有效汞含量降低75.2%;锌硒配施使水稻各器官汞降低了15.2%-92.3%,其中,籽粒汞含量的降幅效果最好(87.6%-92.3%)。除高浓度硒和高低浓度锌配施促进了水稻汞从根到籽粒转运外,锌硒配施对水稻富集与转运汞的阻隔效果均优于锌、硒单施,锌硒配施使水稻汞从根到籽粒的富集系数降低了88%-92%,低浓度硒与高低浓度锌配施对水稻汞从根到籽粒的转运系数分别降低了69.2%和61.5%。【结论】 锌硒配施对水稻汞的阻隔效应显著,有效缓解了汞对水稻生长发育的毒害作用。
黄秋, 刘静, 秦樊鑫, 罗帮林, 罗林, 李宛蔚, 徐安琪. 锌硒配施对水稻汞的阻隔效应[J]. 生物技术通报, 2024, 40(6): 143-151.
HUANG Qiu, LIU Jing, QIN Fan-xin, LUO Bang-lin, LUO Lin, LI Wan-yu, XU An-qi. Barrier Effect of Zinc and Selenium Combined Application on Mercury Accumulation in Rice[J]. Biotechnology Bulletin, 2024, 40(6): 143-151.
pH | 有机质Organic matter /(g·kg-1) | 碱解氮Alkaline hydrolyzable nitrogen /(mg·kg-1) | 有效磷Available phosphorus /(mg·kg-1) | 速效钾Available potassium /(mg·kg-1) | 全汞Total mercury / (mg·kg-1) | 有效汞Available mercury/ (μg·kg-1) | 全锌Total zinc/ (mg·kg-1) | 有效锌Ava- ilable zinc / (mg·kg-1) | 全硒Total selenium /(mg·kg-1) | 有效硒Available selenium /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
6.28 | 42.26 | 231.00 | 15.94 | 69.00 | 22.38 | 7.29 | 109.05 | 2.91 | 2.53 | 0.44 |
表1 供试土壤理化性质
Table 1 Physical and chemical properties of experimental soil
pH | 有机质Organic matter /(g·kg-1) | 碱解氮Alkaline hydrolyzable nitrogen /(mg·kg-1) | 有效磷Available phosphorus /(mg·kg-1) | 速效钾Available potassium /(mg·kg-1) | 全汞Total mercury / (mg·kg-1) | 有效汞Available mercury/ (μg·kg-1) | 全锌Total zinc/ (mg·kg-1) | 有效锌Ava- ilable zinc / (mg·kg-1) | 全硒Total selenium /(mg·kg-1) | 有效硒Available selenium /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
6.28 | 42.26 | 231.00 | 15.94 | 69.00 | 22.38 | 7.29 | 109.05 | 2.91 | 2.53 | 0.44 |
图1 不同处理锌硒对土壤pH(A)及有效汞、有效锌、有效硒(B)的影响 CK:不加锌硒;Z1、Z2:分别为低、高锌单施(10 mg/kg和100 mg/kg);S1、S2:分别为低、高硒单施(2.5 mg/kg和10 mg/kg);Z1+S1、Z1+S2、Z2+S1和Z2+S2:分别为低、高锌和低高硒配施。不同小写字母表示不同处理间在P<0.05水平上差异显著,下同
Fig. 1 Effects of different treatments of Zn and Se on soil pH(A)and available Hg, available Zn, and available Se(B) CK: No zinc or selenium added; Z1 and Z2 : single application of low and high zinc(10 mg/kg and 100 mg/kg), respectively; S1 and S2: single application of low and high selenium(2.5 mg/kg and 10 mg/kg), respectively; Z1+S1, Z1+S2, Z2+S1, and Z2+S2: combined application of low high zinc, and low high selenium, respectively. Different lowercase letters indicate significant differences at the P<0.05 level between different treatments, the same below
处理Treatment | 株高Plant height/cm | 分蘖数Number of tillers | 穗数 Spike | 产量Yield /(g·plant-1) |
---|---|---|---|---|
CK | 93.43±2.61ab | 6±0.35a | 5±0.54b | 13.61±0.03ab |
Z1 | 106.47±2.2d | 6±0.67a | 5±0.25b | 15.43±0.69cde |
Z2 | 101.97±0.75cd | 6±0.25a | 4±0.51a | 14.33±0.5bc |
S1 | 102.2±2.79cd | 6±0.1a | 5±0.19b | 15.02±0.65bcd |
S2 | 94.13±2ab | 6±0.51a | 5±0.19b | 14.94±1.06bcd |
Z1+S1 | 97.3±4.35bc | 6±0.44a | 6±0.19c | 16.93±0.55e |
Z1+S2 | 90.97±2.89a | 6±0.19a | 5±0.1b | 12.12±1.12a |
Z2+S1 | 99.63±0.8c | 7±0.6b | 5±0.33b | 16.07±1.28de |
Z2+S2 | 91.1±2.48a | 7±0.17b | 6±0.25c | 13.58±1.01ab |
表2 锌硒处理后水稻的生物量
Table 2 Biomass of rice treated with Zn and Se
处理Treatment | 株高Plant height/cm | 分蘖数Number of tillers | 穗数 Spike | 产量Yield /(g·plant-1) |
---|---|---|---|---|
CK | 93.43±2.61ab | 6±0.35a | 5±0.54b | 13.61±0.03ab |
Z1 | 106.47±2.2d | 6±0.67a | 5±0.25b | 15.43±0.69cde |
Z2 | 101.97±0.75cd | 6±0.25a | 4±0.51a | 14.33±0.5bc |
S1 | 102.2±2.79cd | 6±0.1a | 5±0.19b | 15.02±0.65bcd |
S2 | 94.13±2ab | 6±0.51a | 5±0.19b | 14.94±1.06bcd |
Z1+S1 | 97.3±4.35bc | 6±0.44a | 6±0.19c | 16.93±0.55e |
Z1+S2 | 90.97±2.89a | 6±0.19a | 5±0.1b | 12.12±1.12a |
Z2+S1 | 99.63±0.8c | 7±0.6b | 5±0.33b | 16.07±1.28de |
Z2+S2 | 91.1±2.48a | 7±0.17b | 6±0.25c | 13.58±1.01ab |
图3 水稻根-茎(A)、根-叶(B)、根-稻壳(C)和根-籽粒(D)的汞转运系数
Fig. 3 Hg transfer coefficients of rice roots to stems(A), roots to leaves(B), roots to rice husks(C), and roots to grains(D)
图4 水稻稻壳(A)、茎(B)、籽粒(C)、叶(D)和根(E)中汞的富集系数 A、B、D、E饼状图总比例为6.5%,C为1%
Fig. 4 Enrichment coefficients of mercury in rice husks(A), stems(B), grains(C), leaves(D)and rice roots(E) The total proportion of pie charts in A, B, D, and E is 6.5%, while C is 1%
图5 高低浓度锌硒单、配施后各影响因子间的相关性热图 *和**分别表示在P<0.05水平显著相关和P<0.01水平极显著相关
Fig. 5 Heat map of correlation between various influencing factors of high and low concentrations of zinc and selenium after single and combined application * and * * respectively indicate significant correlation at the P<0.05 level and extremely significant correlation at the P<0.01 level
[1] | 康天恺. 不同锌肥及施用方法对水稻籽粒产量和锌有效性的影响[D]. 武汉: 华中农业大学, 2022. |
Kang TK. Effects of different zinc fertilizer and application methods on grain yield and zinc bioavailability of rice[D]. Wuhan: Huazhong Agricultural University, 2022. | |
[2] | 宋佳媚. 低温胁迫下锌对水稻分蘖生长及恢复的影响[D]. 哈尔滨: 东北农业大学, 2020. |
Song JM. Effects of zinc on rice tiller growth and recovery under low temperature stress[D]. Harbin: Northeast Agricultural University, 2020. | |
[3] | 袁宇飞. Zn、Se对Hg胁迫下小麦种子萌发及幼苗生长的影响[D]. 泰安: 山东农业大学, 2011. |
Yuan YF. Effects of Zn on seed germination and seedling growth of wheat under Hg stress[D]. Tai'an: Shandong Agricultural University, 2011. | |
[4] | Liu T, Man Y, Li P, et al. A hydroponic study on effect of zinc against mercury uptake by Triticale: kinetic process and accumulation[J]. Bull Environ Contam Toxicol, 2022, 108(2): 359-365. |
[5] | Cong WX, Li N, Miao YL, et al. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury(Hg)stress in rice[J]. J Hazard Mater, 2024, 461: 132649. |
[6] | Hossain KFB, Hosokawa T, Saito T, et al. Zinc-pretreatment triggers glutathione and Nrf2-mediated protection against inorganic mercury-induced cytotoxicity and intrinsic apoptosis in PC12 cells[J]. Ecotoxicol Environ Saf, 2021, 207: 111320. |
[7] | Moulick D, Santra SC, Ghosh D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain[J]. Ecotoxicol Environ Saf, 2018, 152: 67-77. |
[8] | 张璐. 土壤—水稻系统硒汞交互作用机制研究[D]. 重庆: 西南大学, 2016. |
Zhang L. Interaction mechanism of selenium and mercury in soil-rice system[D]. Chongqing: Southwest University, 2016. | |
[9] | 高阿祥, 周鑫斌, 张城铭. 硒(IV)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响[J]. 土壤学报, 2017, 54(4): 989-998. |
Gao AX, Zhou XB, Zhang CM. Effect of iron plaque on root on uptake and translocation of mercury in rice seedlings treated with selenium(IV)[J]. Acta Pedol Sin, 2017, 54(4): 989-998. | |
[10] | 徐灿灿, 孙达, 王根荣, 等. 富里酸结合叶面硒肥用于油菜修复低汞污染农田土壤[J]. 环境工程, 2019, 37(7): 199-203. |
Xu CC, Sun D, Wang GR, et al. Accumulation of mercury from slightly contaminated farmland soil by rape with addition of fulvic acid and foliar spraying with selenium[J]. Environ Eng, 2019, 37(7): 199-203. | |
[11] | Manivannan N, Subirana MA, Boada R, et al. Mercury speciation in selenium enriched wheat plants hydroponically exposed to mercury pollution[J]. Sci Rep, 2023, 13(1): 21132. |
[12] | Wang YJ, Dang F, Zhao JT, et al. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil[J]. Environ Pollut, 2016, 213: 232-239. |
[13] |
Wang YJ, Dang F, Evans RD, et al. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil[J]. Sci Rep, 2016, 6: 19477.
doi: 10.1038/srep19477 pmid: 26778218 |
[14] | Gao M, Zhou J, Liu HL, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Sci Total Environ, 2018, 631-632: 1100-1108. |
[15] | 呼艳姣. 汞胁迫对水稻毒性临界值研究[D]. 贵阳: 贵州师范大学, 2023. |
Hu YJ. Study on the critical values of toxicity of mercury stress to rice[D]. Guiyang: Guizhou Normal University, 2023. | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[17] | 黄玉芬, 王果, 刘坤, 等. 酸性土壤有效汞提取方法研究[J]. 农业环境科学学报, 2012, 31(8): 1566-1570. |
Huang YF, Wang G, Liu K, et al. Extraction method for available mercury in acid soils[J]. J Agro Environ Sci, 2012, 31(8): 1566-1570. | |
[18] | Li YY, Li H, Li YF, et al. Evidence for molecular antagonistic mechanism between mercury and selenium in rice(Oryza sativa L.): a combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques[J]. J Trace Elem Med Biol, 2018, 50: 435-440. |
[19] | Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants[J]. Int J Mol Sci, 2020, 21(20): 7433. |
[20] | Wani KI, Naeem M, Castroverde CDM, et al. Molecular mechanisms of nitric oxide(NO)signaling and reactive oxygen species(ROS)homeostasis during abiotic stresses in plants[J]. Int J Mol Sci, 2021, 22(17): 9656. |
[21] | Akhtar N, Khan S, Rehman SU, et al. Synergistic effects of zinc oxide nanoparticles and bacteria reduce heavy metals toxicity in rice(Oryza sativa L.) plant[J]. Toxics, 2021, 9(5): 113. |
[22] |
薛欣月, 于雪然, 刘晓刚, 等. 水稻锌吸收、转运、累积机理研究进展[J]. 生物技术通报, 2022, 38(4): 29-43.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1484 |
Xue XY, Yu XR, Liu XG, et al. Research progress in absorption, transportation and accumulation mechanism of zinc in rice[J]. Biotechnol Bull, 2022, 38(4): 29-43. | |
[23] | 叶廷红, 张赓, 李小坤. 水稻锌营养及锌肥高效施用研究进展[J]. 中国土壤与肥料, 2019(6): 1-6. |
Ye TH, Zhang G, Li XK. Research advance of zinc nutrition and efficient application of zinc fertilizer in rice[J]. Soil Fertil Sci China, 2019(6): 1-6. | |
[24] |
Sturikova H, Krystofova O, Huska D, et al. Zinc, zinc nanoparticles and plants[J]. J Hazard Mater, 2018, 349: 101-110.
doi: S0304-3894(18)30040-2 pmid: 29414741 |
[25] |
Noulas C, Tziouvalekas M, Karyotis T. Zinc in soils, water and food crops[J]. J Trace Elem Med Biol, 2018, 49: 252-260.
doi: S0946-672X(17)30838-6 pmid: 29472130 |
[26] | 王梦柯. 不同外源硒吸收及木质部和韧皮部转运的差异[D]. 杨凌: 西北农林科技大学, 2019. |
Wang MK. Difference of uptake, xylem-and phloem-mediated transport of differentselenium species[D]. Yangling: Northwest A & F University, 2019. | |
[27] |
呼艳姣, 陈美凤, 强瑀, 等. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1127 |
Hu YJ, Chen MF, Qiang Y, et al. Alleviation mechanisms of zinc-selenium interaction on the cadmium toxicity in rice under cadmium stress[J]. Biotechnol Bull, 2022, 38(4): 143-152. | |
[28] | Barker AV, Pilbeam DJ. Handbook of plant nutrition[M]. 2nd edition. Boca Raton: CRC Press, 2015. |
[29] | Ulhassan Z, Ali Gill R, Huang HF, et al. Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system[J]. Plant Physiol Biochem, 2019, 145: 142-152. |
[30] | Tran TAT, Zhou F, Yang WX, et al. Detoxification of mercury in soil by selenite and related mechanisms[J]. Ecotoxicol Environ Saf, 2018, 159: 77-84. |
[31] | Wu ZC, Xu SJ, Shi HZ, et al. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage[J]. Ecotoxicol Environ Saf, 2018, 166: 157-164. |
[32] | Qin XM, Nie ZJ, Liu HE, et al. Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress[J]. Environ Exp Bot, 2018, 150: 232-239. |
[33] | 陈美凤. 锌硒对镉胁迫水稻生长及镉积累的影响[D]. 贵阳: 贵州师范大学, 2021. |
Chen MF. Effects of zinc and selenium on growth and cadmium accumulation of rice under cadmium stress[D]. Guiyang: Guizhou Normal University, 2021. | |
[34] | 薛明月. 硒锌配施对土壤硒、锌生物有效性的影响及其机制[D]. 杨凌: 西北农林科技大学, 2020. |
Xue MY. Effects of selenium combined with zinc amendment on selenium and zinc bioavailability in soil and mechanisms[D]. Yangling: Northwest A & F University, 2020. | |
[35] | 刘梦圆, 孙亚飞, 周立旻, 等. 硒和生物炭联合施用降低稻米甲基汞累积的研究[J]. 地球与环境, 2022, 50(3): 340-346. |
Liu MY, Sun YF, Zhou LM, et al. Effects of the co-applications of selenium and biochar on methylmercury accumulation in rice[J]. Earth Environ, 2022, 50(3): 340-346. | |
[36] |
Tang WL, Dang F, Evans D, et al. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses[J]. Chemosphere, 2017, 169: 369-376.
doi: S0045-6535(16)31622-8 pmid: 27886539 |
[37] | Li YF, Zhao JT, Li YY, et al. The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China[J]. Plant Soil, 2015, 391(1): 195-205. |
[38] | Tran TAT, Dinh QT, Cui ZW, et al. Comparing the influence of selenite(Se4+)and selenate(Se6+)on the inhibition of the mercury(Hg)phytotoxicity to pak choi[J]. Ecotoxicol Environ Saf, 2018, 147: 897-904. |
[39] | Li YY, Zhao JT, Zhang BW, et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice(Oryza sativa L.) seedlings exposed to different mercury species[J]. Plant Soil, 2016, 398(1): 87-97. |
[40] | Zhou XB, Li YY. Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture[J]. Environ Sci Pollut Res Int, 2019, 26(14): 13795-13803. |
[41] | Guo P, Du HX, Wang DY, et al. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves[J]. Sci Total Environ, 2021, 765: 142682. |
[42] | 张涵彤, 何巧, 倪妍霞, 等. 锌对水稻幼苗镉积累及抗氧化系统的影响研究[J]. 农产品质量与安全, 2019(1): 55-61. |
Zhang HT, He Q, Ni YX, et al. Study on effect of zinc on cadmium accumulation and antioxidant system in rice seedlings[J]. Qual Saf Agro Prod, 2019(1): 55-61. | |
[43] | Tang ZY, Fan FL, Deng SP, et al. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review[J]. Ecotoxicol Environ Saf, 2020, 202: 110950. |
[44] | 周鑫斌, 于淑慧, 王文华, 等. 土壤施硒对水稻根表铁膜形成和汞吸收的影响[J]. 西南大学学报: 自然科学版, 2014, 36(1): 91-95. |
Zhou XB, Yu SH, Wang WH, et al. Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plants[J]. J Southwest Univ Nat Sci Ed, 2014, 36(1): 91-95. | |
[45] | Jia HF, Song ZP, Wu FY, et al. Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco[J]. Environ Exp Bot, 2018, 153: 127-134. |
[46] | Zhao YY, Hu CX, Wang X, et al. Selenium alleviated chromium stress in Chinese cabbage(Brassica campestris L. ssp. Pekinensis)by regulating root morphology and metal element uptake[J]. Ecotoxicol Environ Saf, 2019, 173: 314-321. |
[47] |
Malheiros RSP, Costa LC, Ávila RT, et al. Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture[J]. Planta, 2019, 250(1): 333-345.
doi: 10.1007/s00425-019-03175-6 pmid: 31030327 |
[1] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[2] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[3] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[4] | 赵静雅, 彭梦雅, 张时雨, 单艺轩, 邢小萍, 施艳, 李海洋, 杨雪, 李洪连, 陈琳琳. C2H2锌指转录因子FpCzf7参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38(8): 216-224. |
[5] | 呼艳姣, 陈美凤, 强瑀, 李海燕, 刘静, 秦樊鑫. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152. |
[6] | 薛欣月, 于雪然, 刘晓刚, 马嘉欣, 田蕾, 李培富. 水稻锌吸收、转运、累积机理研究进展[J]. 生物技术通报, 2022, 38(4): 29-43. |
[7] | 程英, 靳明辉, 萧玉涛. 鳞翅目昆虫基因编辑技术研究进展[J]. 生物技术通报, 2020, 36(3): 18-28. |
[8] | 郭彦秀, 陈静, 王艳芳, 孙春玉, 王义, 张美萍. Dof转录因子在植物中的调控作用[J]. 生物技术通报, 2019, 35(5): 146-156. |
[9] | 张昊, 魏跃伟, 姬小明, 潘婷婷, 王慧. 烟叶多糖硒化衍生物制备及其体外抗氧化活性研究[J]. 生物技术通报, 2019, 35(10): 89-94. |
[10] | 冯瑜祥, 李相阳, 邵向丽, 许文涛. 汞离子传感器检测技术研究进展[J]. 生物技术通报, 2018, 34(9): 116-128. |
[11] | 李素贞, 陈茹梅. ZIP蛋白在植物中的功能分析[J]. 生物技术通报, 2018, 34(11): 1-7. |
[12] | 解文雅, 张传海, 潘登科, 贺晓云. 锌指蛋白6(ZBED6)研究进展[J]. 生物技术通报, 2018, 34(11): 50-55. |
[13] | 娄兴丹, 张根林, 叶邦策,. 高富硒酵母的筛选及富硒强化研究[J]. 生物技术通报, 2017, 33(12): 132-137. |
[14] | 陈徉, 宋天顺, 周国玲, 谢婧婧. 一株抗锌菌的分离鉴定及其对印度芥菜修复锌污染土壤的影响[J]. 生物技术通报, 2017, 33(10): 156-162. |
[15] | 王立辉, 严超宇, 王浩, 张翔宇. 土壤汞污染生物修复技术研究进展[J]. 生物技术通报, 2016, 32(2): 51-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||