生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 180-189.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1171
阿丽亚·外力1(), 陈永坤1, 克拉热木·克里木江1, 王宝庆2(), 陈凌娜1()
收稿日期:
2023-12-13
出版日期:
2024-06-26
发布日期:
2024-05-23
通讯作者:
陈凌娜,女,博士,副教授,研究方向:植物发育及代谢调控机制;E-mail: ln.chen@xjnu.edu.cn;作者简介:
阿丽亚·外力,女,硕士研究生,研究方向:植物生长发育调控;E-mail: 2090926128@qq.com
基金资助:
ALIYA Waili1(), CHEN Yong-kun1, KELAREMU Kelimujiang1, WANG Bao-qing2(), CHEN Ling-na1()
Received:
2023-12-13
Published:
2024-06-26
Online:
2024-05-23
摘要:
【目的】 SQUAMOSA promoter binding protein-like(SPL)转录因子在植物开花诱导中起重要的调控作用。从核桃基因组中鉴定SPL(JrSPL)基因家族成员并分析其表达特性,为探究SPL在核桃开花诱导中的功能研究提供参考。【方法】 采用生物信息学方法鉴定JrSPL基因家族成员,并预测其基本理化性质、保守结构域、进化关系、启动子顺式作用元件等;利用转录组测序和RT-qPCR技术分析JrSPL家族成员在核桃不同组织及嫁接诱导开花后的表达水平。【结果】 JrSPL家族有28个成员,其基因结构和蛋白结构均高度保守,分布在核桃14条不同的染色体,与拟南芥和毛果杨分别存在17处和24处共线性关系,根据系统发育关系可分为8组。JrSPL启动子存在大量的光响应元件、激素应答元件、胁迫响应元件等。转录组测序分析显示,JrSPL基因在核桃不同组织表达量有差异,在雄花、雌花、顶芽及叶中均有表达,多数基因在雌花中的表达量都比较高,有6个基因最为显著,它们可能在开花诱导中起关键作用。在嫁接诱导核桃开花材料中,检测的12个JrSPLs中除了JrSPL8外,在开花材料中的表达量均高于对照,JrSPL2和JrSPL25在混合花序的雄花中表达显著,JrSPL8在顶芽中高表达。【结论】 JrSPL基因在核桃成花中具有重要作用,其高表达是花期提前的主要因素。
阿丽亚·外力, 陈永坤, 克拉热木·克里木江, 王宝庆, 陈凌娜. 核桃SPL基因家族的系统进化和表达分析[J]. 生物技术通报, 2024, 40(6): 180-189.
ALIYA Waili, CHEN Yong-kun, KELAREMU Kelimujiang, WANG Bao-qing, CHEN Ling-na. Phylogenetic Evolution and Expression Analysis of SPL Gene Family in Juglans regia[J]. Biotechnology Bulletin, 2024, 40(6): 180-189.
软件或在线工具名称Name of the software or online tool | 用途Usage |
---|---|
ProtParam在线工具( | 蛋白理化性质预测Prediction of protein physicochemical properties |
ProtComp9.0( | 亚细胞定位预测Prediction of subcellular localization |
MEME程序( | 保守基序分析Conservative motif analysis |
ClustalW2(v2.1) | 多重序列比对Multiple sequence alignment |
PlantCARE( | 启动子顺式作用元件预测Prediction of promoter cis-acting elements |
表1 生物信息学软件及使用目的
Table 1 Bioinformatics software and purpose of usage
软件或在线工具名称Name of the software or online tool | 用途Usage |
---|---|
ProtParam在线工具( | 蛋白理化性质预测Prediction of protein physicochemical properties |
ProtComp9.0( | 亚细胞定位预测Prediction of subcellular localization |
MEME程序( | 保守基序分析Conservative motif analysis |
ClustalW2(v2.1) | 多重序列比对Multiple sequence alignment |
PlantCARE( | 启动子顺式作用元件预测Prediction of promoter cis-acting elements |
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物名称 Primer name | 引物序列 Primer sequence(5'-3') | |
---|---|---|---|---|
JrSPL1-F | ATCCCCCTCGCAATGGGAGTGG | JrSPL16-R | CCTCCAAAGGCTTGTTCTTCTCCGC | |
JrSPL1-R | CAGAGAAGCATGTCCCAAGTCTGG | JrSPL20-F | GCAGAGCCGAGGGAAAGAGGAG | |
JrSPL2-F | ATCCCCCTCGCAATGGGAGTGG | JrSPL20-R | CCGCCTGGCAAGTAATCAGCGTTG | |
JrSPL2-R | CAGAGAAGCATGTCCCAAGTCTGG | JrSPL21-F | CGCCGATGCCAAGCCGTACC | |
JrSPL3-F | CTCTCTGGCCGAGTCGGGAG | JrSPL21-R | GTCGCCTCTCATTGTGTCCGGC | |
JrSPL3-R | CACCACTCCTCACCTTCTTCGGC | JrSPL22-F | CTCTCTTCTGTCATCACCTCCGGC | |
JrSPL4-F | CGTCTGCTTCTCCACCCATCTCG | JrSPL22-R | CGGATCCCATGTGAAACCTTCCGC | |
JrSPL4-R | CAGCACACCACCACCCCTCACC | JrSPL23-F | GTGCCAGGTGTGCAGTTGTTGCAAG | |
JrSPL8-F | ACAGGCCGGATGCCATAGTCGAG | JrSPL23-R | CCCACTTGAATGGGGCAACCGAG | |
JrSPL8-R | CTGCCTGGCAACATGGCGGTG | JrSPL25-F | GCTATGAGTGCTGCGGATTTGCGG | |
JrSPL14-F | GGCTCGTGGTGTGGCAGTTCATC | JrSPL25-R | TTGAAGAGCCCCCGGTCAGAGG | |
JrSPL14-R | CTGAGGGTGTAGGGACTCGGGA | Jractin-F | ATGATGTCAAGGAAGGACTC | |
JrSPL16-F | GGCACCGCAGCGAATGATGACAC | Jractin-R | CACAATGATCTCAGCTCCG |
表2 实时荧光定量PCR引物序列
Table 2 RT-qPCR primer sequence
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物名称 Primer name | 引物序列 Primer sequence(5'-3') | |
---|---|---|---|---|
JrSPL1-F | ATCCCCCTCGCAATGGGAGTGG | JrSPL16-R | CCTCCAAAGGCTTGTTCTTCTCCGC | |
JrSPL1-R | CAGAGAAGCATGTCCCAAGTCTGG | JrSPL20-F | GCAGAGCCGAGGGAAAGAGGAG | |
JrSPL2-F | ATCCCCCTCGCAATGGGAGTGG | JrSPL20-R | CCGCCTGGCAAGTAATCAGCGTTG | |
JrSPL2-R | CAGAGAAGCATGTCCCAAGTCTGG | JrSPL21-F | CGCCGATGCCAAGCCGTACC | |
JrSPL3-F | CTCTCTGGCCGAGTCGGGAG | JrSPL21-R | GTCGCCTCTCATTGTGTCCGGC | |
JrSPL3-R | CACCACTCCTCACCTTCTTCGGC | JrSPL22-F | CTCTCTTCTGTCATCACCTCCGGC | |
JrSPL4-F | CGTCTGCTTCTCCACCCATCTCG | JrSPL22-R | CGGATCCCATGTGAAACCTTCCGC | |
JrSPL4-R | CAGCACACCACCACCCCTCACC | JrSPL23-F | GTGCCAGGTGTGCAGTTGTTGCAAG | |
JrSPL8-F | ACAGGCCGGATGCCATAGTCGAG | JrSPL23-R | CCCACTTGAATGGGGCAACCGAG | |
JrSPL8-R | CTGCCTGGCAACATGGCGGTG | JrSPL25-F | GCTATGAGTGCTGCGGATTTGCGG | |
JrSPL14-F | GGCTCGTGGTGTGGCAGTTCATC | JrSPL25-R | TTGAAGAGCCCCCGGTCAGAGG | |
JrSPL14-R | CTGAGGGTGTAGGGACTCGGGA | Jractin-F | ATGATGTCAAGGAAGGACTC | |
JrSPL16-F | GGCACCGCAGCGAATGATGACAC | Jractin-R | CACAATGATCTCAGCTCCG |
图3 JrSPL基因与AtSPL和PtSPL基因共线性分析 Pt:毛果杨;At:拟南芥;Jr:核桃
Fig. 3 Collinearity analysis between SPL in J. regia and AtSPL and PtSPL gene Pt: P. trichocarpa; At: A. thaliana; Jr: J. regia
图4 核桃、拟南芥、番茄和毛果杨SPL家族成员系统进化关系 Sl:番茄;Pt:毛果杨;At:拟南芥;Jr:核桃
Fig. 4 Phylogenetic relation of SPL family members of J. regia, A. thaliana, S. lycopersicum and P. trichocarpa Sl: S. lycopersicum; Pt: P. trichocarpa; At: A. thaliana; Jr: J. regia
图5 JrSPL基因在核桃不同组织中的表达分析 图例表示对FPKM值进行log2对数变换的结果;红色表示高表达水平,蓝色表示低表达水平;S:茎; L:叶;M:雄花;F:雌花;E:胚;K:果壳;I:总苞
Fig. 5 Expression analysis of JrSPL genes in different tissues The legend indicates the log2 logarithmic transformation on FPKM value. Red indicates high expression levels and blue indicates low expression levels. S: Stem;L: leaf; M: male flower; F: female flower; E: embryo; K: kernel; I: involucre
图7 核桃嫁接诱导开花后JrSPL基因的相对表达量 CK代表晚实核桃嫁接后的再生枝条茎尖;Jf1、Jf2、Jf3、Jm、Js1、Js2分别代表嫁接诱导后‘新新2号’开花材料中的纯雌花(Jf1,Jf2)、混合花序的雌花(Jf3)及雄花(Jm)、茎尖(Js1,Js2);*代表与对照比较相对表达量有极显著差异(P<0.01)
Fig. 7 Relative expression of JrSPL gene in J. regia after grafting-induced flowering CK refers to the stem tips of regenerated branches following the grafting of late fruiting walnut trees. Jf1, Jf2, Jf3, Jm, Js1, and Js2 correspondingly denote distinct floral structures within the flowering material of 'Xinxin 2' post-grafting induction, including pure female flowers (Jf1, Jf2), mixed female flowers (Jf3), male flowers (Jm), and stem tips (Js1, Js2). * indicates a significant difference in relative expression levels compared to the control(P < 0.01)
[1] | Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet, 1996, 250(1): 7-16. |
[2] | 田晶, 赵雪媛, 谢隆聖, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报: 自然科学版, 2018, 42(3): 159-166. |
Tian J, Zhao XY, Xie LS, et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(3): 159-166. | |
[3] | Chen XB, Zhang ZL, Liu DM, et al. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development[J]. J Integr Plant Biol, 2010, 52(11): 946-951. |
[4] | Yang SM, Overlander-Chen M, Carlson CH, et al. A SQUAMOSA promoter binding protein-like transcription factor controls crop ideotype for high productivity in barley[J]. Plant Direct, 2022, 6(9): e450. |
[5] | Stief A, Altmann S, Hoffmann K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell, 2014, 26(4): 1792-1807. |
[6] | Guo Q, Li L, Zhao K, et al. Genome-wide analysis of poplar SQUAMOSA-promoter-binding protein(SBP) family under salt stress[J]. Forests, 2021, 12(4): 413. |
[7] |
Preston JC, Hileman LC. Functional evolution in the plant squamosa-promoter binding protein-like(SPL)gene family[J]. Front Plant Sci, 2013, 4: 80.
doi: 10.3389/fpls.2013.00080 pmid: 23577017 |
[8] | Li CL, Lu SF. Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biol, 2014, 14: 131. |
[9] | Shao FJ, Lu Q, Wilson IW, et al. Genome-wide identification and characterization of the SPL gene family in Ziziphus jujuba[J]. Gene, 2017, 627: 315-321. |
[10] | He J, Xu ML, Willmann MR, et al. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana[J]. PLoS Genet, 2018, 14(4): e1007337. |
[11] |
Ma ZB, Li W, Wang HP, et al. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering[J]. J Integr Plant Biol, 2020, 62(11): 1659-1673.
doi: 10.1111/jipb.12946 |
[12] | Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnol J, 2021, 19(2): 311-323. |
[13] | Yan Y, Wei MX, Li Y, et al. miR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice(Oryza sativa L.)[J]. Plant Sci, 2021, 302: 110728. |
[14] | Shikata M, Koyama T, Mitsuda N, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant Cell Physiol, 2009, 50(12): 2133-2145. |
[15] |
Manning K, Tör M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet, 2006, 38(8): 948-952.
doi: 10.1038/ng1841 pmid: 16832354 |
[16] | Zhou L, Quan SW, Ma L, et al. Molecular characterization of SBP-box gene family during floral induction in walnut(Juglans regia L.)[J]. Tree Genet Genomes, 2019, 16(1): 12. |
[17] |
Zhang JP, Zhang WT, Ji FY, et al. A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication[J]. Plant Biotechnol J, 2020, 18(9): 1848-1850.
doi: 10.1111/pbi.13350 pmid: 32004401 |
[18] |
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy[J]. Nat Rev Genet, 2017, 18: 411-424.
doi: 10.1038/nrg.2017.26 pmid: 28502977 |
[19] |
冯策婷, 江律, 刘鑫颖, 等. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0531 |
Feng CT, Jiang Lyu, Liu XY, et al. Identification of the NAC gene family in Rosa persica and response analysis under drought stress[J]. Biotechnol Bull, 2023, 39(11): 283-296. | |
[20] |
邢媛, 宋健, 李俊怡, 等. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0588 |
Xing Y, Song J, Li JY, et al. Identification of AP gene family and its response analysis to abiotic stress in Setaria italica[J]. Biotechnol Bull, 2023, 39(11): 238-251. | |
[21] |
Yamaguchi A, Wu MF, Yang L, et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Dev Cell, 2009, 17(2): 268-278.
doi: 10.1016/j.devcel.2009.06.007 pmid: 19686687 |
[22] | 李优. 早实核桃花芽分化特点和管理技术要点[J]. 北方园艺, 2015(20): 55. |
Li Y. Characteristics of flower bud differentiation and management techniques of early fruiting walnut[J]. North Hortic, 2015(20): 55. | |
[23] | Jung JH, Seo PJ, Kang SK, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Mol Biol, 2011, 76(1/2): 35-45. |
[1] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[2] | 路喻丹, 刘晓驰, 冯新, 陈桂信, 陈义挺. 猕猴桃BBX基因家族成员鉴定与转录特征分析[J]. 生物技术通报, 2024, 40(2): 172-182. |
[3] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[4] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[5] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[6] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[7] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[8] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
[9] | 冯建英, 李立芹, 鲁黎明. 马铃薯bHLH转录因子家族全基因组鉴定与表达分析[J]. 生物技术通报, 2022, 38(2): 21-33. |
[10] | 曹映辉, 胡美娟, 童妍, 张燕萍, 赵凯, 彭东辉, 周育真. 建兰ABC基因家族鉴定及其在花发育过程中的表达模式分析[J]. 生物技术通报, 2022, 38(11): 162-174. |
[11] | 李峰, 陈雯雯, 邓江丽, 毛清黎, 权文利, 毛雅慧. 白藜芦醇对核桃细菌性黑斑病菌的抑制作用[J]. 生物技术通报, 2021, 37(6): 58-65. |
[12] | 让凤菊, 任艳利, 张维, 欧阳艳. 伊犁野核桃内抑菌抗氧化内生真菌的分离、筛选和鉴定[J]. 生物技术通报, 2019, 35(9): 218-223. |
[13] | 颜君, 郭兴启, 曹学成. WRKY转录因子的基因组水平研究现状[J]. 生物技术通报, 2015, 31(11): 9-17. |
[14] | 杨卫民, 冉翠香, 高兴盛 ,师亚波, 赵林芳. 核桃青皮废弃物中木霉菌的分离及其适应性研究[J]. 生物技术通报, 2014, 30(12): 153-160. |
[15] | 宝梅英;赵荷雅;杨娇馥;鲍文蕾;李彬;杨军;侯鑫;王志钢;. 内蒙古白绒山羊IGF-IR基因cDNA克隆及组织表达特异性分析[J]. , 2012, 0(04): 103-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||