生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 61-75.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0847

• 综述与专论 • 上一篇    下一篇

增强酿酒酵母对木质纤维素水解液抑制剂耐受性的研究进展

贾承霖1,2(), 郭晓鹏3, 陆栋1,2,4, 张苗苗1,2,4()   

  1. 1.中国科学院近代物理研究所,兰州 730000
    2.中国科学院大学,北京 100049
    3.兰州理工大学生命科学与工程学院,兰州 730050
    4.甘肃省微生物资源开发利用重点实验室,兰州 730070
  • 收稿日期:2024-08-30 出版日期:2025-04-26 发布日期:2025-04-25
  • 通讯作者: 张苗苗,女,副研究员,硕士生导师,研究方向 :生物物理学与生物工程;E-mail: zhangmiaomiaod@impcas.ac.cn
  • 作者简介:贾承霖,男,硕士研究生,研究方向 :生物与医药;E-mail: jiachenglin@impcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(11905265);中国科学院“西部青年学者”重点项目(2023年度),兰州人才创新创业项目(2022-RC-37);甘肃省青年科学基金项目(22JR5RA300)

Advances in Improving the Tolerance of Saccharomyces cerevisiae to Lignocellulose Hydrolysate Inhibitors

JIA Cheng-lin1,2(), GUO Xiao-peng3, LU Dong1,2,4, ZHANG Miao-miao1,2,4()   

  1. 1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
    2.University of Chinese Academy of Sciences, Beijing 100049
    3.School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
    4.Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070
  • Received:2024-08-30 Published:2025-04-26 Online:2025-04-25

摘要:

利用酿酒酵母进行木质纤维素类生物质发酵,从而实现经济和社会可持续发展,具有良好的应用前景,但该类生物质水解液中的羧酸、呋喃醛和多酚对酿酒酵母产生了较强抑制作用,这些抑制剂对细胞膜、线粒体和核糖体等细胞器造成了严重的损伤,影响了酵母对水解液中可发酵糖的利用。本文系统综述了这三类抑制剂对酿酒酵母产生胁迫的信号通路与代谢途径,例如,弱酸会诱导细胞内酸化,呋喃醛和酚类化合物会使胞内氧化还原酶活性下降并抑制翻译进程。基于上述胁迫机理,本文深入探讨了诱变育种、实验室适应性进化、细胞自絮凝和共培养等正向遗传学方法。这些方法借助表型突变结合多组学分析可以挖掘关键基因,从而构建高效菌株。同时,阐述了反向遗传学方法,即利用已知功能基因进行基因组转化,以及基于CRISPR-Cas系统开展菌株定向培育。其中,酿酒酵母过表达目标基因、运用CRISPR-Cas9进行基因敲除以及利用CRISPRa/CRISPRi进行基因调控等方法,有效调节了关键基因的表达,进而提升了酿酒酵母的耐受性能。在此基础上,高通量基因文库与多途径基因调控相结合的综合策略可以大规模地用于关键基因筛选和多维度的基因调控。未来,可利用基因表达和代谢通量联合分析等策略实时监控与耐受性相关的关键酶的活性以及关键代谢通路的碳通量变化,从而更好地应对多重抑制剂对酿酒酵母产生的协同作用,为酿酒酵母高效利用木质纤维素发酵提供参考与建议。

关键词: 酿酒酵母, 木质纤维素水解液, 抑制剂, 耐受性, 响应机制, 遗传改造

Abstract:

Using Saccharomyces cerevisiae to ferment lignocellulosic biomass, thus realizing sustainable economic and social development, and has a good application prospect. However, the carboxylic acid, furfural and polyphenols from it have a strong inhibitory effect on S. cerevisiae. These inhibitors cause severe damages to organelles such as cell membranes, mitochondria and ribosomes, which affects the utilization of fermentable sugars in the hydrolysate by S. cerevisiae. This paper systematically reviews the signal pathways and metabolic pathways by which these three types of inhibitors exert stress on S. cerevisiae. For example, weak acids can induce intracellular acidification, and furfural and phenolic compounds can reduce the activity of intracellular redox enzymes and inhibit the translation process. Based on the above stress mechanisms, this paper deeply explores positive genetic methods, such as mutagenesis breeding, laboratory adaptive evolution, cell self-flocculation, and co-culture. These methods are used to mine key genes by phenotypic mutation combined with multi-omics analysis, so as to construct efficient strains. Meanwhile, reverse genetic methods are also elaborated, that is, genomic transformation using known functional genes and strain-directed breeding based on the CRISPR-Cas system. Among them, methods such as overexpressing the target gene in S. cerevisiae, gene knockout using CRISPR-Cas9, and gene regulation using CRISPRa/CRISPRi effectively regulate the expressions of key genes, thereby enhancing the tolerance performance of S. cerevisiae. On this basis, a comprehensive strategy combining high-throughput gene library with multi-pathway gene regulation can be used for key gene screening and multi-dimensional gene regulation on a large scale. In the future, strategies such as the combined analysis of gene expression and metabolic flux can be used to monitor the activities of key enzymes and the carbon flux changes in key metabolic pathways related to tolerance in real time, so as to better cope with the synergistic effects of multiple inhibitors on S. cerevisiae, and provide references and suggestions for S. cerevisiae to efficiently utilize lignocellulose for fermentation.

Key words: Saccharomyces cerevisiae, lignocellulosic hydrolysate, inhibitors, tolerance, response mechanism, genetic modification