| 1 |
Chaudhary J, Alisha A, Bhatt V, et al. Mutation breeding in tomato: advances, applicability and challenges [J]. Plants, 2019, 8(5): 128.
|
| 2 |
杜敏敏, 周明, 邓磊, 等. 番茄分子育种现状与展望——从基因克隆到品种改良 [J]. 园艺学报, 2017, 44(3): 581-600.
|
|
Du MM, Zhou M, Deng L, et al. Current status and prospects on tomato molecular breeding—from gene cloning to cultivar improvement [J]. Acta Hortic Sin, 2017, 44(3): 581-600.
|
| 3 |
Yang JW, Liu Y, Liang B, et al. Genomic basis of selective breeding from the closest wild relative of large-fruited tomato [J]. Hortic Res, 2023, 10(8): uhad142.
|
| 4 |
Pereira L, Zhang L, Sapkota M, et al. Unraveling the genetics of tomato fruit weight during crop domestication and diversification [J]. Theor Appl Genet, 2021, 134(10): 3363-3378.
|
| 5 |
Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000, 289(5476): 85-88.
|
| 6 |
Beauchet A, Bollier N, Grison M, et al. The cell number regulator FW2.2 protein regulates cell-to-cell communication in tomato by modulating callose deposition at plasmodesmata [J]. Plant Physiol, 2024, 196(2): 883-901.
|
| 7 |
Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication [J]. Nat Genet, 2008, 40(6): 800-804.
|
| 8 |
Alonge M, Wang XG, Benoit M, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato [J]. Cell, 2020, 182(1): 145-161.e23.
|
| 9 |
Huang ZJ, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11 [J]. Theor Appl Genet, 2011, 123(3): 465-474.
|
| 10 |
Mu Q, Huang ZJ, Chakrabarti M, et al. Fruit weight is controlled by cell size regulator encoding a novel protein that is expressed in maturing tomato fruits [J]. PLoS Genet, 2017, 13(8): e1006930.
|
| 11 |
Rodríguez GR, Muños S, Anderson C, et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity [J]. Plant Physiol, 2011, 156(1): 275-285.
|
| 12 |
Lippman Z, Tanksley SD. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom [J]. Genetics, 2001, 158(1): 413-422.
|
| 13 |
Tanksley SD. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato [J]. Plant Cell, 2004, 16(): S181-S189.
|
| 14 |
Xu C, Liberatore KL, MacAlister CA, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato [J]. Nat Genet, 2015, 47(7): 784-792.
|
| 15 |
Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, et al. ENO regulates tomato fruit size through the floral meristem development network [J]. Proc Natl Acad Sci USA, 2020, 117(14): 8187-8195.
|
| 16 |
孟思达, 韩磊磊, 相恒佐, 等. 番茄心室数的调控机制研究进展 [J]. 园艺学报, 2024, 51(7): 1649-1664.
|
|
Meng SD, Han LL, Xiang HZ, et al. Research progress on the mechanism of regulating the number of tomato locules [J]. Acta Hortic Sin, 2024, 51(7): 1649-1664.
|
| 17 |
Lin T, Zhu GT, Zhang JH, et al. Genomic analyses provide insights into the history of tomato breeding [J]. Nat Genet, 2014, 46(11): 1220-1226.
|
| 18 |
Razifard H, Ramos A, Della Valle AL, et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America [J]. Mol Biol Evol, 2020, 37(4): 1118-1132.
|
| 19 |
Jamann TM, Balint-Kurti PJ, Holland JB. QTL mapping using high-throughput sequencing [J]. Methods Mol Biol, 2015, 1284: 257-285.
|
| 20 |
Li ZQ, Xu YH. Bulk segregation analysis in the NGS era: a review of its teenage years [J]. Plant J, 2022, 109(6): 1355-1374.
|
| 21 |
Gao L, Gonda I, Sun HH, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor [J]. Nat Genet, 2019, 51(6): 1044-1051.
|
| 22 |
Li N, He Q, Wang J, et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species [J]. Nat Genet, 2023, 55(5): 852-860.
|
| 23 |
Consortium TG. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012, 485(7400): 635-641.
|
| 24 |
Zhou Y, Zhang ZY, Bao ZG, et al. Graph pangenome captures missing heritability and empowers tomato breeding [J]. Nature, 2022, 606(7914): 527-534.
|
| 25 |
Wang Y, Sun CL, Ye ZB, et al. The genomic route to tomato breeding: Past, present, and future [J]. Plant Physiol, 2024, 195(4): 2500-2514.
|
| 26 |
Han HY, Li XH, Li TZ, et al. Chromosome-level genome assembly of Solanum pimpinellifolium [J]. Sci Data, 2024, 11(1): 577.
|
| 27 |
王娟, 王柏柯, 李宁, 等. 基因编辑技术在番茄育种中的应用进展 [J]. 植物生理学报, 2020, 56(12): 2606-2616.
|
|
Wang J, Wang BK, Li N, et al. Advances in the application of genome editing in tomato breeding [J]. Plant Physiol J, 2020, 56(12): 2606-2616.
|
| 28 |
Zsögön A, Čermák T, Naves ER, et al. De novo domestication of wild tomato using genome editing [J]. Nat Biotechnol, 2018. DOI: 10.1038/nbt.4272 .
|
| 29 |
Li TD, Yang XP, Yu Y, et al. Domestication of wild tomato is accelerated by genome editing [J]. Nat Biotechnol, 2018. DOI: 10.1038/nbt.4273 .
|
| 30 |
刘慧, 黄婷, 陶建平, 等. 番茄生物钟基因SlLNK1、SlEID1和SlELF3光周期响应分析 [J]. 园艺学报, 2023, 50(10): 2079-2090.
|
|
Liu H, Huang T, Tao JP, et al. Analysis of circadian clock genes SlLNK1, SlEID1, and SlELF3 response to photoperiod in tomato [J]. Acta Hortic Sin, 2023, 50(10): 2079-2090.
|