生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 104-118.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0983
• 研究报告 •
何卫1,2(
), 李俊怡1,2, 李新妮1,2, 马雪华2, 邢媛1,2, 曹晓宁1,2, 乔治军1,2(
), 刘思辰1,2(
)
收稿日期:2024-10-08
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
刘思辰,女,副研究员,研究方向 :谷子种质资源评价利用;E-mail: lsch@163.com作者简介:何卫,男,硕士,研究方向 :作物遗传育种;E-mail: hwysyyds@163.com
基金资助:
HE Wei1,2(
), LI Jun-yi1,2, LI Xin-ni1,2, MA Xue-hua2, XING Yuan1,2, CAO Xiao-ning1,2, QIAO Zhi-ju1,2(
), LIU Si-chen1,2(
)
Received:2024-10-08
Published:2025-05-26
Online:2025-06-05
摘要:
目的 基于全基因组水平对谷子(Setaria italica)泛素连接酶U-box(plant U-box protein, PUB)基因家族(SiPUB)进行系统鉴定,为谷子泛素连接酶U-box基因家族的生物学功能研究提供理论支撑。 方法 利用U-box保守Pfam序列全基因组鉴定谷子U-box基因家族成员,采用系统进化树构建、亚细胞定位预测、预测蛋白的相对分子质量与等电点等理化性质、绘制家族成员Scaffold定位图等分析,利用实时荧光定量PCR技术(RT-qPCR)对不同胁迫处理下的谷子U-box基因家族成员表达情况进行研究。 结果 谷子基因组中有71个PUB基因家族成员,不均匀地分布在8条染色体上。系统进化分析表明,SiPUB基因分布在Ⅰ-Ⅸ亚家族中。启动子顺式作用元件分析显示,U-box基因与植物生长发育、胁迫和激素调控相关。荧光定量PCR结果表明,SiPUBs在谷子的各个部位差异表达,对谷子U-box基因家族不同结构域在胁迫下的表达模式分析,含U-box结构域基因在低温和干旱下表达量变化显著、茉莉酸下特定时段表达,含U-box+HEAT_2结构域基因在3种胁迫下变化不显著,含U-box+Pkinase等结构域基因在不同胁迫下表达量有升有降,表明各结构域在植物环境应答及基因调控中有不同作用,植株可通过调控SiPUBs表达响应非生物胁迫。 结论 鉴定出71个SiPUBs基因,不同亚家族在非生物胁迫下的表达模式存在差异,表明SiPUBs对谷子响应非生物胁迫起重要的调控作用。
何卫, 李俊怡, 李新妮, 马雪华, 邢媛, 曹晓宁, 乔治军, 刘思辰. 谷子泛素连接酶U-box E3基因家族的鉴定及响应非生物胁迫分析[J]. 生物技术通报, 2025, 41(5): 104-118.
HE Wei, LI Jun-yi, LI Xin-ni, MA Xue-hua, XING Yuan, CAO Xiao-ning, QIAO Zhi-ju, LIU Si-chen. Genome-wide Identification of U-box E3 Ubiquitin Ligase Gene Family in Setaria italica and Response Analysis to Abiotic Stress[J]. Biotechnology Bulletin, 2025, 41(5): 104-118.
引物名称 Primer name | 基因序列 Gene sequence (5′‒3′) |
|---|---|
| 25S-F | AGGCAACAGAAACTCCATACG |
| 25S-R | ATGGCATAGCATTCATCACG |
| SiPUB2-F | GGAGTCACTGCTCCGCAAT |
| SiPUB2-R | CTTCTCGTCAGCGGGGC |
| SiPUB3-F | ACAGCGGAAAGAGGCTCATC |
| SiPUB3-R | CGAGCGACATCAAGTTTGGC |
| SiPUB8-F | CGGGCTTGAAGAGAAGCTGA |
| SiPUB8-R | ACTCGTGCAGGAGAAAGTCG |
| SiPUB24-F | GTTACTCCTGAGGTCACTTG |
| SiPUB24-R | TCCACCTGTAACATTGTCTG |
| SiPUB29-F | CCATTGGTGGTTCAGACATA |
| SiPUB29-R | AGGGAGTCCAAATATCCGTA |
| SiPUB38-F | TCAGATTCATTCTCCCAAGC |
| SiPUB38-R | CCTGAACTTTCTGAAGCAAC |
| SiPUB46-F | TCAGAGAAATTGACGAGGAG |
| SiPUB46-R | ATAATCCTGTCAGCAGGTTG |
| SiPUB49-F | GGAGCGAGATGATGCGGTTA |
| SiPUB49-R | AGTGAACGGCTGAAGACCTG |
| SiPUB55-F | CCAGCATCGAGTCCTGGGTC |
| SiPUB55-R | ACGCACCACTCCTGGATGA |
| SiPUB59-F | CAACAAGCCCAAGAGGGACT |
| SiPUB59-R | GCTGGCTTCCCAGTTACCAT |
| SiPUB64-F | CTCACAGGAACAAAGCGTGC |
| SiPUB64-R | CACGCCTCAATGTGCTGTTC |
| SiPUB70-F | CTGTTCCTGTGCCCCATCTC |
| SiPUB70-R | CCGTACCCGAAGATCCACTG |
表1 引物序列
Table 1 Sequences of primers
引物名称 Primer name | 基因序列 Gene sequence (5′‒3′) |
|---|---|
| 25S-F | AGGCAACAGAAACTCCATACG |
| 25S-R | ATGGCATAGCATTCATCACG |
| SiPUB2-F | GGAGTCACTGCTCCGCAAT |
| SiPUB2-R | CTTCTCGTCAGCGGGGC |
| SiPUB3-F | ACAGCGGAAAGAGGCTCATC |
| SiPUB3-R | CGAGCGACATCAAGTTTGGC |
| SiPUB8-F | CGGGCTTGAAGAGAAGCTGA |
| SiPUB8-R | ACTCGTGCAGGAGAAAGTCG |
| SiPUB24-F | GTTACTCCTGAGGTCACTTG |
| SiPUB24-R | TCCACCTGTAACATTGTCTG |
| SiPUB29-F | CCATTGGTGGTTCAGACATA |
| SiPUB29-R | AGGGAGTCCAAATATCCGTA |
| SiPUB38-F | TCAGATTCATTCTCCCAAGC |
| SiPUB38-R | CCTGAACTTTCTGAAGCAAC |
| SiPUB46-F | TCAGAGAAATTGACGAGGAG |
| SiPUB46-R | ATAATCCTGTCAGCAGGTTG |
| SiPUB49-F | GGAGCGAGATGATGCGGTTA |
| SiPUB49-R | AGTGAACGGCTGAAGACCTG |
| SiPUB55-F | CCAGCATCGAGTCCTGGGTC |
| SiPUB55-R | ACGCACCACTCCTGGATGA |
| SiPUB59-F | CAACAAGCCCAAGAGGGACT |
| SiPUB59-R | GCTGGCTTCCCAGTTACCAT |
| SiPUB64-F | CTCACAGGAACAAAGCGTGC |
| SiPUB64-R | CACGCCTCAATGTGCTGTTC |
| SiPUB70-F | CTGTTCCTGTGCCCCATCTC |
| SiPUB70-R | CCGTACCCGAAGATCCACTG |
| 分类名称 | 蛋白名称 | 基因 |
|---|---|---|
| Classification name | Protein name | Gene |
| Ⅰ | U-box+ARM | SiPUB5, SiPUB10, SiPUB12, SiPUB14, SiPUB25, SiPUB31, SiPUB32, SiPUB33, SiPUB35, SiPUB37, SiPUB43, SiPUB47, SiPUB48, SiPUB64, SiPUB65, SiPUB71 |
| Ⅱ | U-box | SiPUB2, SiPUB15, SiPUB16, SiPUB19, SiPUB20, SiPUB21, SiPUB22, SiPUB26, SiPUB27, SiPUB34, SiPUB40, SiPUB42, SiPUB45, SiPUB55, SiPUB57, SiPUB62, SiPUB66, SiPUB67, SiPUB70 |
| Ⅲ | U-box | SiPUB17, SiPUB18, SiPUB58 |
| U-box+KAP | SiPUB50 | |
| Ⅳ | U-box | SiPUB28 |
| U-box+ARM | SiPUB9, SiPUB28, SiPUB54 | |
| Ⅴ | U-box | SiPUB13, SiPUB23, SiPUB56 |
| U-box+ARM | SiPUB39 | |
| U-box+HEAT_2 | SiPUB3 | |
| Ⅵ | U-box | SiPUB8 |
| Pro_isomerase+U-box | SiPUB44 | |
| Ⅶ | U-box | SiPUB6, SiPUB61 |
| U-box+Pkinase | SiPUB1, SiPUB36, SiPUB38, SiPUB46, SiPUB52, SiPUB68 | |
| U-box+Pkinase+Usp | SiPUB7, SiPUB59, SiPUB63 | |
| U-box+Pkinase_Tyr+Usp | SiPUB11, SiPUB41, SiPUB51, SiPUB69 | |
| TPR_11+U-box+Pkinase | SiPUB30, SiPUB60 | |
| Ⅸ | Prp19+WD40+U-box | SiPUB29 |
表2 谷子U-box基因家族蛋白质结构域
Table 2 U-box gene family protein domains in Setaria italica
| 分类名称 | 蛋白名称 | 基因 |
|---|---|---|
| Classification name | Protein name | Gene |
| Ⅰ | U-box+ARM | SiPUB5, SiPUB10, SiPUB12, SiPUB14, SiPUB25, SiPUB31, SiPUB32, SiPUB33, SiPUB35, SiPUB37, SiPUB43, SiPUB47, SiPUB48, SiPUB64, SiPUB65, SiPUB71 |
| Ⅱ | U-box | SiPUB2, SiPUB15, SiPUB16, SiPUB19, SiPUB20, SiPUB21, SiPUB22, SiPUB26, SiPUB27, SiPUB34, SiPUB40, SiPUB42, SiPUB45, SiPUB55, SiPUB57, SiPUB62, SiPUB66, SiPUB67, SiPUB70 |
| Ⅲ | U-box | SiPUB17, SiPUB18, SiPUB58 |
| U-box+KAP | SiPUB50 | |
| Ⅳ | U-box | SiPUB28 |
| U-box+ARM | SiPUB9, SiPUB28, SiPUB54 | |
| Ⅴ | U-box | SiPUB13, SiPUB23, SiPUB56 |
| U-box+ARM | SiPUB39 | |
| U-box+HEAT_2 | SiPUB3 | |
| Ⅵ | U-box | SiPUB8 |
| Pro_isomerase+U-box | SiPUB44 | |
| Ⅶ | U-box | SiPUB6, SiPUB61 |
| U-box+Pkinase | SiPUB1, SiPUB36, SiPUB38, SiPUB46, SiPUB52, SiPUB68 | |
| U-box+Pkinase+Usp | SiPUB7, SiPUB59, SiPUB63 | |
| U-box+Pkinase_Tyr+Usp | SiPUB11, SiPUB41, SiPUB51, SiPUB69 | |
| TPR_11+U-box+Pkinase | SiPUB30, SiPUB60 | |
| Ⅸ | Prp19+WD40+U-box | SiPUB29 |
图2 谷子(Si)、水稻(Os)、拟南芥(At)U-box基因家族系统进化树五角星表示谷子U-box基因家族成员
Fig. 2 Phylogenetic tree of S. italica (Si), Oryza sativa (Os) and Arabidopsis thaliana (At) U-box genesfamilyThe pentagram indicates the members of the U-box gene family in S. italica
图4 谷子U-box基因家族成员在谷子染色体上的分布五角星表示串联基因簇
Fig. 4 Distribution of U-box gene family members on chromosomes in S. italicaThe pentagram indicates the tandem gene cluster
图5 谷子种内U-box基因家族共线性分析1‒9代表谷子第1-9染色体;染色体内部以基因密度填充,颜色由蓝到红代表基因密度由小到大
Fig. 5 Synteny analysis of U-box gene family in S. italica1‒9 indicates chromosome 1‒9 in S. italica. The interior of the chromosome is filled with gene density,with colors ranging from blue to red indicating a gradual increase in gene density
图6 谷子U-box基因家族成员与拟南芥(A)、玉米(B)和水稻(C) U-box基因共线性分析
Fig. 6 Synteny analysis of U-box gene between S. italicaA., thaliana (A), Z. mays (B) and O. sativa (C)
图8 低温处理下不同基因的表达水平不同字母表示差异显著(P<0.05)。下同
Fig. 8 Expressions of different genes under low-temperature treatmentThe different letters indicate significant differences (P<0.05). The same below
| 1 | 刁现民. 育种创新造就谷子种业新发展 [J]. 中国种业, 2022(4): 4-7. |
| Diao XM. Breeding innovation creates new development of millet seed industry [J]. China Seed Ind, 2022(4): 4-7. | |
| 2 | 邢媛, 宋健, 李俊怡, 等. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析 [J]. 生物技术通报, 2023, 39(11): 238-251. |
| Xing Y, Song J, Li JY, et al. Identification of AP gene family and its response analysis to abiotic stress in Setaria italica [J]. Biotechnol Bull, 2023, 39(11): 238-251. | |
| 3 | 王建雄. 山西吕梁地区近50年气候变化与主要气象灾害的研究 [D]. 兰州: 兰州大学, 2012. |
| Wang JX. Study on climate change and main meteorological disasters in Luliang area of Shanxi province in recent 50 years [D]. Lanzhou: Lanzhou University, 2012. | |
| 4 | Craig A, Ewan R, Mesmar J, et al. E3 ubiquitin ligases and plant innate immunity [J]. J Exp Bot, 2009, 60(4): 1123-1132. |
| 5 | Marshall RS, Vierstra RD. Dynamic regulation of the 26S proteasome: from synthesis to degradation [J]. Front Mol Biosci, 2019, 6: 40. |
| 6 | Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology [J]. Nat Rev Mol Cell Biol, 2009, 10(6): 385-397. |
| 7 | Patterson C. A new Gun in town: the U box is a ubiquitin ligase domain [J]. Sci STKE, 2002, 2002(116): pe4. |
| 8 | Koegl M, Hoppe T, Schlenker S, et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly [J]. Cell, 1999, 96(5): 635-644. |
| 9 | Wiborg J, O'Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases [J]. Biochem J, 2008, 413(3): 447-457. |
| 10 | 曹英豪. 水稻U-box基因家族的特征及转录表达模式分析 [D]. 保定: 河北农业大学, 2010. |
| Cao YH. Characteristics and transcriptional expression patterns of U-box gene family in rice [D]. Baoding: Hebei Agricultural University, 2010. | |
| 11 | 郑兴卫, 邵麟惠, 李聪. 蒺藜苜蓿全基因组中U-box基因家族的筛选与特征分析 [J]. 草业学报, 2015, 24(8): 130-141. |
| Zheng XW, Shao LH, Li C. Genome-wide screening and characterization of the U-box gene family in Medicago truncatula [J]. Acta Prataculturae Sin, 2015, 24(8): 130-141. | |
| 12 | 李菲, 何小红, 龚记熠, 等. 番茄基因组中U-box基因家族的鉴定与分析 [J]. 分子植物育种, 2018, 16(11): 3468-3476. |
| Li F, He XH, Gong JY, et al. Identification and analysis of U-box gene family in tomato genome [J]. Mol Plant Breed, 2018, 16(11): 3468-3476. | |
| 13 | Wang N, Liu YP, Cong YH, et al. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis [J]. Plant Cell Physiol, 2016, 57(6): 1189-1209. |
| 14 | Yu YH, Li XZ, Guo DL, et al. Genome-wide identification and analysis of the U-box family of E3 ligases in grapevine [J]. Russ J Plant Physiol, 2016, 63(6): 835-848. |
| 15 | Cho SK, Ryu MY, Song C, et al. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress [J]. Plant Cell, 2008, 20(7): 1899-1914. |
| 16 | Cho SK, Chung HS, Ryu MY, et al. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog [J]. Plant Physiol, 2006, 142(4): 1664-1682. |
| 17 | Qin Q, Wang YX, Huang LY, et al. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice [J]. Plant Mol Biol, 2020, 102(1/2): 89-107. |
| 18 | Li W, Ahn IP, Ning YS, et al. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis [J]. Plant Physiol, 2012, 159(1): 239-250. |
| 19 | Marquis V, Smirnova E, Graindorge S, et al. Broad-spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis jasmonic acid oxidase mutants [J]. Plant J, 2022, 109(4): 856-872. |
| 20 | 马李广, 张贺龙, 庞小可, 等. 白菜bZIP转录因子基因家族应答春化反应关键基因表达分析 [J]. 江苏农业学报, 2022, 38(3): 765-774. |
| Ma LG, Zhang HL, Pang XK, et al. Genome-wide identification of bZIP transcription factor gene family in Brassica rapa and its association with vernalization [J]. Jiangsu J Agric Sci, 2022, 38(3): 765-774. | |
| 21 | 桂尚枝, 尹倩, 温宏伟, 等. 乌菜春化相关BcGRAS基因鉴定及表达分析 [J]. 植物生理学报, 2022, 58(12): 2273-2285. |
| Gui SZ, Yin Q, Wen HW, et al. Genome-wide identification and expression analysis of BcGRAS genes responded to vernalization in Wucai (Brassica campestris ssp. chinensis var. rosularis) [J]. Plant Physiol J, 2022, 58(12): 2273-2285. | |
| 22 | 陈国户, 庞小可, 李广, 等. 白菜NAC基因家族全基因组鉴定及其应答春化反应的表达分析 [J]. 南京农业大学学报, 2022, 45(4): 656-665. |
| Chen GH, Pang XK, Li G, et al. Genome-wide identification of NAC gene family in Brassica rapa and its expression analysis of response to vernalization [J]. J Nanjing Agric Univ, 2022, 45(4): 656-665. | |
| 23 | Farmer LM, Book AJ, Lee KH, et al. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis [J]. Plant Cell, 2010, 22(1): 124-142. |
| 24 | Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates [J]. J Exp Bot, 2009, 60(4): 1109-1121. |
| 25 | Zhang JZ. Evolution by gene duplication: an update [J]. Trends Ecol Evol, 2003, 18(6): 292-298. |
| 26 | Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biol, 2004, 4: 10. |
| 27 | Liu JL, Li W, Ning YS, et al. The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants [J]. Plant Physiol, 2012, 160(1): 28-37. |
| 28 | 李秋月, 张亚飞, 彭洁, 等. 柑橘U-box基因家族的鉴定及表达分析 [J]. 中国农业科学, 2019, 52(11): 1942-1960. |
| Li QY, Zhang YF, Peng J, et al. Genome wide identification and expression analysis of the U-box gene family in Citrus [J]. Sci Agric Sin, 2019, 52(11): 1942-1960. | |
| 29 | 陈曙, 张彧, 陈卓, 等. 玉米泛素连接酶U-box基因家族的全基因组鉴定及表达分析 [J]. 西南农业学报, 2022, 35(3): 481-490. |
| Chen S, Zhang Y, Chen Z, et al. Genome-wide identification and expression analysis of ubiquitin ligase U-box gene family in maize [J]. Southwest China J Agric Sci, 2022, 35(3): 481-490. | |
| 30 | 齐晨辉, 赵先炎, 韩朋良, 等. 苹果U-box型E3泛素连接酶MdPUB24的耐盐性和ABA敏感性鉴定 [J]. 园艺学报, 2017, 44(12): 2255-2264. |
| Qi CH, Zhao XY, Han PL, et al. Functional identification of salt tolerance and ABA sensitivity of apple U-box E3 ubiquitin ligase MdPUB24 [J]. Acta Hortic Sin, 2017, 44(12): 2255-2264. | |
| 31 | Liu YC, Wu YR, Huang XH, et al. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana [J]. Mol Plant, 2011, 4(6): 938-946. |
| 32 | Tang X, Ghimire S, Liu WG, et al. Potato E3 ubiquitin ligase PUB27 negatively regulates drought tolerance by mediating stomatal movement [J]. Plant Physiol Biochem, 2020, 154: 557-563. |
| 33 | Howe GA, Yoshida Y. Evolutionary origin of JAZ proteins and jasmonate signaling [J]. Mol Plant, 2019, 12(2): 153-155. |
| 34 | Dunn MA, White AJ, Vural S, et al. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.) [J]. Plant Mol Biol, 1998, 38(4): 551-564. |
| 35 | Dvir A, Conaway JW, Conaway RC. Mechanism of transcription initiation and promoter escape by RNA polymerase II [J]. Curr Opin Genet Dev, 2001, 11(2): 209-214. |
| 36 | Potenza C, Aleman L, Sengupta-Gopalan C. Targeting transgene expression in research, agricultural, and environmental applications: Promoters used in plant transformation [J]. Vitro Cell Dev Biol Plant, 2004, 40(1): 1-22. |
| 37 | Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 2002, 5(5): 430-436. |
| 38 | 丁雪峰, 刘鸿艳, 罗利军. 水稻OsGRAS1启动子的克隆及多样性分析 [J]. 上海农业学报, 2010, 26(4): 8-14. |
| Ding XF, Liu HY, Luo LJ. Cloning and diversity analysis of the OsGRAS1 promoter in rice [J]. Acta Agric Shanghai, 2010, 26(4): 8-14. |
| [1] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [2] | 钱祺, 王增辉, 孙荣华, 罗英智, 苏良辰. 花生蛋白磷酸酶AhPDCP37的抗旱性功能研究[J]. 生物技术通报, 2025, 41(3): 98-103. |
| [3] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [4] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
| [5] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [6] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
| [7] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
| [8] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
| [9] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
| [10] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
| [11] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
| [12] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
| [13] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
| [14] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
| [15] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||