生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 61-70.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0933
刘华1,2(
), 宋洁3, 曾海娟1,2, 王金斌1,2(
), 钱韻芳3(
)
收稿日期:2024-09-25
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
:王金斌,男,博士,副研究员,研究方向 :生物育种材料安全分子检测以及生物安全评价、微生物菌剂的开发和利用;E-mail: wangjinbin2013@126.com作者简介:刘华,女,博士,副研究员,研究方向 :食用农产品的快速检测技术;E-mail: liuhua0212@foxmail.com
基金资助:
LIU Hua1,2(
), SONG Jie3, ZENG Hai-juan1,2, WANG Jin-bin1,2(
), QIAN Yun-fang3(
)
Received:2024-09-25
Published:2025-06-26
Online:2025-06-30
摘要:
单碱基突变是指在基因组序列中由于单个核苷酸发生改变的一种基因突变类型,已被证明是造成生物体遗传性状、疾病易感性和耐药性的重要原因之一,在遗传学、疾病诊断及生物进化等众多领域具有重要研究意义。随着核酸检测技术的不断发展,单碱基突变检测技术为辅助动植物育种、检测疾病或微生物相关突变位点及指导治疗药物使用提供关键助力。本文综述了几种常见的单碱基突变检测方法,简要介绍了各种方法的原理、优势及局限性,列举了该技术在遗传性状、疾病诊断、病毒检测、食品掺假、动植物育种以及微生物耐药性检测等方面的应用情况。重点描述了基于CRISPR/Cas系统的单碱基突变快速检测策略,依据精准识别靶标类型不同,对该系统在不同领域的应用进行阐述,同时结合无核酸扩增技术进行分析,并对未来单碱基突变检测技术的应用及发展趋势进行了探讨,以期为开发快速且经济的单碱基突变检测技术提供思路。
刘华, 宋洁, 曾海娟, 王金斌, 钱韻芳. 单碱基突变检测方法及应用的研究进展[J]. 生物技术通报, 2025, 41(6): 61-70.
LIU Hua, SONG Jie, ZENG Hai-juan, WANG Jin-bin, QIAN Yun-fang. Research Progress in Single-base Mutation Detection Methods and Applications[J]. Biotechnology Bulletin, 2025, 41(6): 61-70.
平台名称 Platform name | 效应蛋白 Effector protein | 扩增方式 Amplification | 靶标 Target | 结果显示 Readout | 检测限 LOD | 检测时长 Time | 参考文献 References |
|---|---|---|---|---|---|---|---|
| CRISDA | Cas9 | 链置换扩增 SDA | 乳腺癌相关SNPs Breast cancer-associated SNPs | 荧光检测 Fluorescence detection | 1 aM | ~2 h | [ |
| CASLFA | Cas9 | 聚合酶链式反应 PCR | 单增李斯特菌 Listeria monocytogenes | 侧向层析试纸条 Lateral flow test strips | 100 copies | <1 h | [ |
| Cas9 | 链置换扩增+滚环扩增 SDA+RCA | 大肠杆菌 O157:H7 E. coli O157:H7 | 荧光检测 Fluorescence detection | 40 CFU/mL | ~2 h | [ | |
| HOLMES | Cas12 | 聚合酶链式反应 PCR | 痛风相关SNP Gout SNP | 荧光检测 Fluorescence detection | 10 aM | ~1 h | [ |
| DETECTR | LbCas12a | 重组酶聚合酶扩增 RPA | 人乳头瘤病毒16/18 HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ≤1 h | [ |
| Cas12a | 重组酶聚合酶扩增 RPA | 炭疽芽孢杆菌 Bacillus anthracis | 肉眼观察 Naked eye | 1 copy | ~90 min | [ | |
| Cas12a | 环介导等温扩增 LAMP | 肠道沙门氏菌毒力基因 Virulence genes of Salmonella enterica | 荧光检测 Fluorescence detection | 15 copies/μL | ~1 h | [ | |
| RatioCRISPR | Cas12a | 重组酶聚合酶扩增 RPA | 线粒体DNA mtDNA | 荧光检测 Fluorescence detection | 15.7 aM | ~25 min | [ |
| CASMART | Cas12a | 重组酶聚合酶扩增 RPA | 肺癌相关基因 EGFR L858R Lung cancer-related genes EGFR L858R | 荧光检测 Fluorescence detection | 0.3 copies/μL | ~1 h | [ |
| CDetection | AaCas12b | 重组酶聚合酶扩增 RPA | 花椰菜花叶病毒/人乳头瘤病毒16/18 CaMV/HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ~1 h | [ |
| HOLMESv2 | Cas12b | 环介导等温扩增 LAMP | 癌症相关基因HEK293T SNP HEK293T SNP | 荧光检测 Fluorescence detection | 10-8 nM | <2.5 h | [ |
| Cas12c-DETECTOR | Cas12c1 | 重组酶聚合酶扩增 RPA | 新冠病毒/人乳头瘤病毒16/18 CoVID2019 SNP/HPV16/HPV18 | 荧光检测/侧向层析试纸条 Fluorescence detection/lateral flow test strips | - | ~2 h | [ |
| Cas14-DETECTR | Cas14a | 含硫代磷酸酯引物的聚合酶链式反应 PT-PCR | 人类HERC2 SNP Human HERC2 SNP | 荧光检测 Fluorescence detection | - | ~1 h | [ |
| Cas14a | 抑制探针置换扩增BDA | 人结直肠癌细胞的BRAF基因的SNP Carcinoma of colon and rectum BRAF SNP | 荧光检测 Fluorescence detection | 103 copies | <2 h | [ | |
| SHERLOCK | Cas13a | 重组酶聚合酶扩增 RPA | 人体健康/寨卡病毒/登革热病毒SNP Human health/ZIKV/DENV SNP | 荧光检测 Fluorescence detection | 0.1% DNA | <1 h | [ |
| Cas13a | 聚合酶链式反应 PCR | 红斑石斑鱼神经坏死病毒 RGNNV | 荧光检测 Fluorescence detection | 102 fM | <1 h | [ | |
| Cas13a | 重组酶聚合酶扩增 RPA | 番茄斑萎病毒 TSWV | 荧光检测 Fluorescence detection | 2.26 × 102 copies/μL | <1 h | [ | |
| RfxCas13d | 重组酶聚合酶扩增 RPA | 水稻黑条矮缩病毒 RBSDV | 荧光检测/侧向层析试纸条 Fluorescence detection / lateral flow test strips | 1 aM | 30-60 min | [ |
表1 以核酸为靶标的不同CRISPR/Cas系统在SNP检测中的应用
Table 1 Application of different CRISPR/Cas systems targeting nucleic acids in SNP detection
平台名称 Platform name | 效应蛋白 Effector protein | 扩增方式 Amplification | 靶标 Target | 结果显示 Readout | 检测限 LOD | 检测时长 Time | 参考文献 References |
|---|---|---|---|---|---|---|---|
| CRISDA | Cas9 | 链置换扩增 SDA | 乳腺癌相关SNPs Breast cancer-associated SNPs | 荧光检测 Fluorescence detection | 1 aM | ~2 h | [ |
| CASLFA | Cas9 | 聚合酶链式反应 PCR | 单增李斯特菌 Listeria monocytogenes | 侧向层析试纸条 Lateral flow test strips | 100 copies | <1 h | [ |
| Cas9 | 链置换扩增+滚环扩增 SDA+RCA | 大肠杆菌 O157:H7 E. coli O157:H7 | 荧光检测 Fluorescence detection | 40 CFU/mL | ~2 h | [ | |
| HOLMES | Cas12 | 聚合酶链式反应 PCR | 痛风相关SNP Gout SNP | 荧光检测 Fluorescence detection | 10 aM | ~1 h | [ |
| DETECTR | LbCas12a | 重组酶聚合酶扩增 RPA | 人乳头瘤病毒16/18 HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ≤1 h | [ |
| Cas12a | 重组酶聚合酶扩增 RPA | 炭疽芽孢杆菌 Bacillus anthracis | 肉眼观察 Naked eye | 1 copy | ~90 min | [ | |
| Cas12a | 环介导等温扩增 LAMP | 肠道沙门氏菌毒力基因 Virulence genes of Salmonella enterica | 荧光检测 Fluorescence detection | 15 copies/μL | ~1 h | [ | |
| RatioCRISPR | Cas12a | 重组酶聚合酶扩增 RPA | 线粒体DNA mtDNA | 荧光检测 Fluorescence detection | 15.7 aM | ~25 min | [ |
| CASMART | Cas12a | 重组酶聚合酶扩增 RPA | 肺癌相关基因 EGFR L858R Lung cancer-related genes EGFR L858R | 荧光检测 Fluorescence detection | 0.3 copies/μL | ~1 h | [ |
| CDetection | AaCas12b | 重组酶聚合酶扩增 RPA | 花椰菜花叶病毒/人乳头瘤病毒16/18 CaMV/HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ~1 h | [ |
| HOLMESv2 | Cas12b | 环介导等温扩增 LAMP | 癌症相关基因HEK293T SNP HEK293T SNP | 荧光检测 Fluorescence detection | 10-8 nM | <2.5 h | [ |
| Cas12c-DETECTOR | Cas12c1 | 重组酶聚合酶扩增 RPA | 新冠病毒/人乳头瘤病毒16/18 CoVID2019 SNP/HPV16/HPV18 | 荧光检测/侧向层析试纸条 Fluorescence detection/lateral flow test strips | - | ~2 h | [ |
| Cas14-DETECTR | Cas14a | 含硫代磷酸酯引物的聚合酶链式反应 PT-PCR | 人类HERC2 SNP Human HERC2 SNP | 荧光检测 Fluorescence detection | - | ~1 h | [ |
| Cas14a | 抑制探针置换扩增BDA | 人结直肠癌细胞的BRAF基因的SNP Carcinoma of colon and rectum BRAF SNP | 荧光检测 Fluorescence detection | 103 copies | <2 h | [ | |
| SHERLOCK | Cas13a | 重组酶聚合酶扩增 RPA | 人体健康/寨卡病毒/登革热病毒SNP Human health/ZIKV/DENV SNP | 荧光检测 Fluorescence detection | 0.1% DNA | <1 h | [ |
| Cas13a | 聚合酶链式反应 PCR | 红斑石斑鱼神经坏死病毒 RGNNV | 荧光检测 Fluorescence detection | 102 fM | <1 h | [ | |
| Cas13a | 重组酶聚合酶扩增 RPA | 番茄斑萎病毒 TSWV | 荧光检测 Fluorescence detection | 2.26 × 102 copies/μL | <1 h | [ | |
| RfxCas13d | 重组酶聚合酶扩增 RPA | 水稻黑条矮缩病毒 RBSDV | 荧光检测/侧向层析试纸条 Fluorescence detection / lateral flow test strips | 1 aM | 30-60 min | [ |
| 1 | 范广轩, 王洪亮, 邢秀梅. SNP标记的研究进展及其应用 [J/OL]. 特产研究, 2023: 1-9. (2023-11-29). . |
| Fan GX, Wang HL, Xing XM. Advances in SNP marker research and its applications [J/OL]. China Ind Econ, 2023: 1-9. (2023-11-29). . | |
| 2 | Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms [J]. Nature, 2001, 409(6822): 928-933. |
| 3 | Jorde LB. Linkage disequilibrium and the search for complex disease genes [J]. Genome Res, 2000, 10(10): 1435-1444. |
| 4 | Giampaoli S, Chillemi G, Valeriani F, et al. The SNPs in the human genetic blueprint era [J]. New Biotechnol, 2013, 30(5): 475-484. |
| 5 | 苏睿, 林峻, 陈鲤群, 等. 高通量自动化SNP检测技术研究进展 [J]. 中国细胞生物学学报, 2019, 41(7): 1412-1422. |
| Su R, Lin J, Chen LQ, et al. Research progress on high-throughput automated SNP detection technology [J]. Chin J Cell Biol, 2019, 41(7): 1412-1422. | |
| 6 | Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci USA, 1977, 74(12): 5463-5467. |
| 7 | 张微, 冯琳琳, 平昭. 单核苷酸多态性检测技术研究进展 [J]. 生物技术通讯, 2016, 27(6): 879-883. |
| Zhang W, Feng LL, Ping Z. Progress in technologies for single nucleotide polymorphism detection [J]. Lett Biotechnol, 2016, 27(6): 879-883. | |
| 8 | Bloemen M, Rector A, Swinnen J, et al. Fast detection of SARS-CoV-2 variants including Omicron using one-step RT-PCR and Sanger sequencing [J]. J Virol Methods, 2022, 304: 114512. |
| 9 | Liu GL, Xin SY, Geng S, et al. Identification of a novel fusion gene NLRC3-NLRP12 in miiuy croaker (Miichthys miiuy) [J]. Fish Shellfish Immunol, 2023, 136: 108697. |
| 10 | Royo JL, Galán JJ. Pyrosequencing for SNP genotyping [M]//Single Nucleotide Polymorphisms. Totowa, NJ: Humana Press, 2009: 123-133. |
| 11 | Ortola-Vidal A, Schnerr H, Rojmyr M, et al. Quantitative identification of plant Genera in food products using PCR and Pyrosequencing® technology [J]. Food Contr, 2007, 18(8): 921-927. |
| 12 | Ramünke S, Melville L, Rinaldi L, et al. Benzimidazole resistance survey for Haemonchus, Teladorsagia and Trichostrongylus in three European countries using pyrosequencing including the development of new assays for Trichostrongylus [J]. Int J Parasitol Drugs Drug Resist, 2016, 6(3): 230-240. |
| 13 | Park JW, Park IH, Kim JM, et al. Rapid detection of FMO3 single nucleotide polymorphisms using a pyrosequencing method [J]. Mol Med Rep, 2022, 25(2): 48. |
| 14 | Erali M, Wittwer CT. High resolution melting analysis for gene scanning [J]. Methods, 2010, 50(4): 250-261. |
| 15 | Vishnuraj MR, Renuka J, Aravind Kumar N, et al. Differential detection of sheep and goat meat using duplex real-time PCR and high-resolution melt analysis [J]. Food Chem Adv, 2023, 2: 100309. |
| 16 | Forghani F, Wei S, Oh DH. A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food [J]. J Food Prot, 2016, 79(5): 810-815. |
| 17 | Liu YJ, Singh P, Mustapha A. High-resolution melt curve PCR assay for specific detection of E. coli O157: H7 in beef [J]. Food Contr, 2018, 86: 275-282. |
| 18 | Gibriel AA, Adel O. Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications [J]. Mutat Res, 2017, 773: 66-90. |
| 19 | Ruiz C, Huang J, Giardina S F, et al. Single-molecule detection of cancer mutations using a novel PCR-LDR-qPCR assay [J]. Hum Mutat, 2020, 41(5): 1051-1068.]. |
| 20 | Wang YZ, Xiao JH, Liu LG, et al. Simultaneous detection of hepatitis B virus genotypes and mutations associated with resistance to lamivudine, adefovir, and telbivudine by the polymerase chain reaction-ligase detection reaction [J]. Braz J Infect Dis, 2011, 15(6): 560-566. |
| 21 | Li HF, Shu JT, Du YF, et al. Analysis of the genetic effects of prolactin gene polymorphisms on chicken egg production [J]. Mol Biol Rep, 2013, 40(1): 289-294. |
| 22 | Yang ZX, Lo YT, Quan Z, et al. Application of a modified Tetra-primer ARMS-PCR assay for rapid Panax species identity authentication in ginseng products [J]. Sci Rep, 2023, 13(1): 14396. |
| 23 | Yang H, Yang S, Xia XH, et al. Sensitive detection of a single-nucleotide polymorphism in foodborne pathogens using CRISPR/Cas12a-signaling ARMS-PCR [J]. J Agric Food Chem, 2022, 70(27): 8451-8457. |
| 24 | Xie YY, Ping Y, Yu P, et al. The rs9402373 polymorphism of CTGF gene may not be related to inflammatory bowel disease susceptibility in Chinese population based on ARMS-PCR genotyping [J]. Heliyon, 2023, 9(6): e17003. |
| 25 | Ho UH, Pak SH, Kim K, et al. Efficient screening of SNP in canine OR52N9 and OR9S25 as assistant marker of olfactory ability [J]. J Vet Behav, 2023, 60: 51-55. |
| 26 | Honardoost MA, Tabatabaeian H, Akbari M, et al. Investigation of sensitivity, specificity and accuracy of Tetra primer arms pcr method in comparison with conventional arms pcr, based on sequencing technique outcomes in ivs-ii-i genotyping of beta thalassemia patients [J]. Gene, 2014, 549(1): 1-6. |
| 27 | Wang ZN, Li MJ, Lan XY, et al. Tetra-primer ARMS-PCR identifies the novel genetic variations of bovine HNF-4α gene associating with growth traits [J]. Gene, 2014, 546(2): 206-213. |
| 28 | Xu XY, Hu XG, Ma GD, et al. Detecting fa leptin receptor mutation in Zucker rats with Tetra-primer amplification-refractory mutation system (ARMS)-PCR [J]. Heliyon, 2023, 9(9): e20159. |
| 29 | Ryu WS. Diagnosis and methods [M]//Molecular Virology of Human Pathogenic Viruses. Amsterdam: Elsevier, 2017: 47-62. |
| 30 | Boccacci P, Chitarra W, Schneider A, et al. Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of 'Nebbiolo' musts and wines [J]. Food Chem, 2020, 312: 126100. |
| 31 | Jing QY, Liu SJ, Song Y, et al. TaqMan real-time quantitative PCR for the detection of beef tallow to assess the authenticity of edible oils [J]. Food Contr, 2024, 156: 110139. |
| 32 | Bundidamorn D, Supawasit W, Trevanich S. Taqman® probe based multiplex RT-PCR for simultaneous detection of Listeria monocytogenes, Salmonella spp. and Shiga toxin-producing Escherichia coli in foods [J]. LWT, 2021, 147: 111696. |
| 33 | Hirotsu Y, Maejima M, Shibusawa M, et al. Classification of Omicron BA.1, BA.1.1, and BA.2 sublineages by TaqMan assay consistent with whole genome analysis data [J]. Int J Infect Dis, 2022, 122: 486-491. |
| 34 | Fondevila M, Børsting C, Phillips C, et al. Forensic SNP genotyping with SNaPshot: technical considerations for the development and optimization of multiplexed SNP assays [J]. Forensic Sci Rev, 2017, 29(1): 57-76. |
| 35 | Li L, Li CJ, Zhang YJ, et al. Simultaneous detection of CYP3A5 and MDR1 polymorphisms based on the SNaPshot assay [J]. Clin Biochem, 2011, 44(5-6): 418-422. |
| 36 | Paneto GG, Köhnemann S, Martins JA, et al. A single multiplex PCR and SNaPshot minisequencing reaction of 42 SNPs to classify admixture populations into mitochondrial DNA haplogroups [J]. Mitochondrion, 2011, 11(2): 296-302. |
| 37 | Zhang B, Zhao N, Peng KK, et al. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis [J]. Comp Biochem Physiol Part D Genomics Proteomics, 2020, 35: 100711. |
| 38 | Yoo E, Haile M, Ko HC, et al. Development of SNP markers for Cucurbita species discrimination [J]. Sci Hortic, 2023, 318: 112089. |
| 39 | Huang CH, Chang MT, Huang MC, et al. Application of the SNaPshot minisequencing assay to species identification in the Lactobacillus casei group [J]. Mol Cell Probes, 2011, 25(4): 153-157. |
| 40 | Cui YB, Xu JM, Cheng MX, et al. Review of CRISPR/Cas9 sgRNA design tools [J]. Interdiscip Sci, 2018, 10(2): 455-465. |
| 41 | Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering [J]. Mol Biotechnol, 2023, 65(3): 311-325. |
| 42 | Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering [J]. Science, 2018, 361(6405): 866-869. |
| 43 | Zhou WH, Hu L, Ying LM, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection [J]. Nat Commun, 2018, 9(1): 5012. |
| 44 | Wang XS, Xiong EH, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay [J]. ACS Nano, 2020, 14(2): 2497-2508. |
| 45 | Sun X, Wang Y, Zhang L, et al. CRISPR-Cas9 triggered two-step isothermal amplification method for E. coli O157: H7 detection based on a metal-organic framework platform [J]. Anal Chem, 2020, 92(4): 3032-3041. |
| 46 | Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-cas systems [J]. Science, 2019, 363(6422): 88-91. |
| 47 | Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection [J]. Cell Discov, 2018, 4: 20. |
| 48 | Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. |
| 49 | Wang DS, Chen G, Lyu YF, et al. A CRISPR/Cas12a-based DNAzyme visualization system for rapid, non-electrically dependent detection of Bacillus anthracis [J]. Emerg Microbes Infect, 2022, 11(1): 428-437. |
| 50 | Zhu YY, Liu JL, Liu SN, et al. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip [J]. Anal Chim Acta, 2023, 1280: 341860. |
| 51 | Wu XL, Zhao Y, Guo CH, et al. RatioCRISPR: a ratiometric biochip based on CRISPR/Cas12a for automated and multiplexed detection of heteroplasmic SNPs in mitochondrial DNA [J]. Biosens Bioelectron, 2023, 241: 115676. |
| 52 | Zhang CQ, Cai ZY, Zhou ZH, et al. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles [J]. Biosens Bioelectron, 2023, 222: 114956. |
| 53 | Teng F, Guo L, Cui TT, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity [J]. Genome Biol, 2019, 20(1): 132. |
| 54 | Li LX, Li SY, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation [J]. ACS Synth Biol, 2019, 8(10): 2228-2237. |
| 55 | Wang ZP, Zhong CH. Cas12c-DETECTOR: a specific and sensitive Cas12c-based DNA detection platform [J]. Int J Biol Macromol, 2021, 193(Pt A): 441-449. |
| 56 | Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J]. Science, 2018, 362(6416): 839-842. |
| 57 | He YW, Shao SJ, Chen JH. High-fidelity identification of single nucleotide polymorphism by type V CRISPR systems [J]. ACS Sens, 2023, 8(12): 4478-4483. |
| 58 | Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science, 2016, 353(6299): aaf5573. |
| 59 | Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. |
| 60 | Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nat Protoc, 2019, 14(10): 2986-3012. |
| 61 | Huang FQ, Shan JH, Liang KS, et al. A new method to detect red spotted grouper neuro necrosis virus (RGNNV) based on CRISPR/Cas13a [J]. Aquaculture, 2022, 555: 738217. |
| 62 | Zhang WH, Jiao YB, Ding CY, et al. Rapid detection of tomato spotted wilt virus with Cas13a in tomato and Frankliniella occidentalis [J]. Front Microbiol, 2021, 12: 745173. |
| 63 | Li LN, Duan CX, Weng JF, et al. A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13 [J]. Sci China Life Sci, 2022, 65(7): 1456-1465. |
| 64 | Kang TJ, Lu JM, Yu T, et al. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example [J]. Biosens Bioelectron, 2022, 206: 114109. |
| 65 | Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex [J]. Biosens Bioelectron, 2017, 95: 67-71. |
| 66 | Balderston S, Taulbee JJ, Celaya E, et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor [J]. Nat Biomed Eng, 2021, 5(7): 713-725. |
| 67 | Zhu YD, Lin YN, Gong B, et al. Dual toeholds regulated CRISPR-Cas12a sensing platform for ApoE single nucleotide polymorphisms genotyping [J]. Biosens Bioelectron, 2024, 255: 116255. |
| 68 | Hu YB, Liao YW, Pan ST, et al. A Triple-Mismatch Differentiating assay exploiting activation and trans cleavage of CRISPR-Cas12a for mutation detection with ultra specificity and sensitivity [J]. Biosens Bioelectron, 2025, 267: 116826. |
| 69 | Jiang T, Guo HZ, Liu YD, et al. A comprehensive genetic variant reference for the Chinese population [J]. Sci Bull, 2024, 69(24): 3820-3825. |
| 70 | Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice [J]. Nature, 2021, 595(7866): 295-302. |
| 71 | Wang MY, Liu XJ, Yang JT, et al. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice [J]. Front Plant Sci, 2022, 13: 944295. |
| 72 | Köbölkuti ZA, Cseke K, Benke A, et al. Allelic variation in candidate genes associated with wood properties of cultivated poplars (Populus) [J]. Biol Futur, 2019, 70(4): 286-294. |
| [1] | 程慧娟, 王昕, 石小涛, 马东旭, 龚大春, 胡骏鹏, 谢智文. 转录因子CREA敲除对黑曲霉形态和分泌β-葡萄糖苷酶的影响[J]. 生物技术通报, 2025, 41(6): 344-354. |
| [2] | 周倩, 唐梦君, 张小燕, 陆俊贤, 唐修君, 杨星星, 高玉时. 基于CRISPR-Cas系统的多重耐药菌防治技术研究进展[J]. 生物技术通报, 2025, 41(5): 42-51. |
| [3] | 高畅, 庄添驰, 李宁, 刘云, 顾鹏飞, 赵昕怡, 季明辉. RPA-CRISPR/Cas12a结合重力驱动微流控芯片的MTB快检方法的建立[J]. 生物技术通报, 2025, 41(5): 62-69. |
| [4] | 姚雪春, 李磊, 王志贤, 盛长忠, ZHOU Zeqi, TAN Cherie S. 基于CRISPR-Cas12a技术的呼吸道合胞病毒检测方法的建立[J]. 生物技术通报, 2025, 41(1): 103-109. |
| [5] | 肖怡梦, 杨雯, 程依依, 罗刚. CRISPR-Cas9基因编辑技术及其在家禽中的研究进展[J]. 生物技术通报, 2024, 40(5): 38-47. |
| [6] | 张祖霖, 刘方芳, 周青鸟, 赵瑞强, 贺菽嘉, 林文珍. 基于CRISPR/Cas9技术构建与鉴定敲除ACE2基因的Huh7肝癌细胞株[J]. 生物技术通报, 2023, 39(6): 181-188. |
| [7] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
| [8] | 胡秀文, 刘华, 王宇, 唐雪明, 王金斌, 曾海娟, 蒋玮, 李红. CRISPR-Cas系统在核酸检测中的应用研究[J]. 生物技术通报, 2021, 37(9): 266-273. |
| [9] | 付志强, 熊艳. 便携式生物光学传感器的研究进展[J]. 生物技术通报, 2021, 37(3): 219-226. |
| [10] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
| [11] | 李信申, 黄小梅, 吴淑秀, 黄瑞荣, 魏林根, 华菊玲. 植物青枯病菌环介导等温扩增快速检测技术研究[J]. 生物技术通报, 2021, 37(1): 272-281. |
| [12] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
| [13] | 高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 2020, 36(5): 22-31. |
| [14] | 陈敏洁, 唐桂月, 洪香娜, 郝沛, 江静, 李轩. 基于CRISPR-Cas13家族的RNA编辑系统及其最新 进展[J]. 生物技术通报, 2020, 36(3): 1-8. |
| [15] | 王琦, 颜春蕾, 高洪伟, 吴薇, 杨庆利. 基于核酸适配体传感器检测食品致病菌的研究进展[J]. 生物技术通报, 2020, 36(11): 245-258. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||