生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 49-60.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1140
收稿日期:2024-11-26
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
田梦青,女,博士,讲师,研究方向 :作物根际微生物;E-mail: tianmengqing@ynnu.edu.cn作者简介:陈才锭,男,硕士研究生,研究方向 :马铃薯根际微生物;E-mail: 19912873285@163.com基金资助:
CHEN Cai-ding(
), SONG Yun-jie, TIAN Meng-qing(
)
Received:2024-11-26
Published:2025-06-26
Online:2025-06-30
摘要:
根际微生物是植物从根际外的土壤微生物中选择性地招募聚集,受生物和非生物因素共同控制获得的特定集合体,它们与植物根系密切联系,共同构成植物根际微生态系统,在植物生长发育过程中发挥着重要作用。近年来,随着高通量测序和宏基因组学技术的突破性发展,研究焦点从模式植物转向水稻、小麦、玉米、马铃薯四大主粮作物,逐步揭示根际菌群在作物全生育期的动态演变规律。研究表明,不同生育期根际菌群结构与功能呈现显著时序性差异,随着植物生长,根际菌群的α多样性通常呈现“低-高-低”的抛物线趋势,其中营养生长阶段菌群丰度达到最高。这种阶段性演替与植株营养需求、根系分泌物成分变化、土壤环境变化、免疫应答以及微生物间相互作用密切相关。本文对近年来4种主粮作物不同生育期根际细菌菌群变化及相关原因进行综述,为植物根际有益微生物的研究以及作物生长过程中菌肥的施用提供借鉴。未来需进一步整合微生物组工程与农艺措施,开发生育期适配型菌肥,为实现作物-微生物互作精准调控提供理论依据和技术支撑。
陈才锭, 宋云洁, 田梦青. 四大主粮作物不同生育期根际微生物菌群变化研究进展[J]. 生物技术通报, 2025, 41(6): 49-60.
CHEN Cai-ding, SONG Yun-jie, TIAN Meng-qing. Advance on the Changes of Rhizosphere Microbial Communities in the Growth Stages of the Four Major Staple Crops[J]. Biotechnology Bulletin, 2025, 41(6): 49-60.
| 1 | Chen SM, Waghmode TR, Sun RB, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization [J]. Microbiome, 2019, 7(1): 136. |
| 2 | Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health [J]. Trends Plant Sci, 2012, 17(8): 478-486. |
| 3 | Liu Q, Cheng L, Nian H, et al. Linking plant functional genes to rhizosphere microbes: a review [J]. Plant Biotechnol J, 2023, 21(5): 902-917. |
| 4 | Bai B, Liu WD, Qiu XY, et al. The root microbiome: Community assembly and its contributions to plant fitness [J]. J Integr Plant Biol, 2022, 64(2): 230-243. |
| 5 | Liu HW, Li JY, Carvalhais LC, et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens [J]. New Phytol, 2021, 229(5): 2873-2885. |
| 6 | Yi SW, Li F, Wu C, et al. Co-transformation of HMs-PAHs in rhizosphere soils and adaptive responses of rhizobacteria during whole growth period of rice (Oryza sativa L.) [J]. J Environ Sci, 2023, 132: 71-82. |
| 7 | 吴书琴, 胡敏, 薛银刚, 等. 水稻不同生育期根际溶磷菌群落特征 [J]. 农业环境科学学报, 2025, 44(1): 59-72. |
| Wu SQ, Hu M, Xue YG, et al. Community characteristics of phosphorus-solubilizing bacteria in rhizosphere of rice at different growth stages [J]. Journal of Agro-Environment Science, 2025, 44(1): 59-72. | |
| 8 | Ikeda S, Sasaki K, Okubo T, et al. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions [J]. Microbes Environ, 2014, 29(1): 50-59. |
| 9 | Bashir Z, Zargar MY, Vishwakarma DK. Potassium-solubilizing microorganisms for sustainable agriculture [M]//Applied Agricultural Practices for Mitigating Climate Change. Boca Raton: CRC Press, 2019: 17-28. |
| 10 | Nagata T, Oobo T, Aozasa O. Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants [J]. J Biosci Bioeng, 2013, 115(6): 686-690. |
| 11 | Custódio V, Gonin M, Stabl G, et al. Sculpting the soil microbiota [J]. Plant J, 2022, 109(3): 508-522. |
| 12 | Hinsu AT, Panchal KJ, Pandit RJ, et al. Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions [J]. Sci Rep, 2021, 11(1): 17457. |
| 13 | Fageria NK. Yield physiology of rice [J]. J Plant Nutr, 2007, 30(6): 843-879. |
| 14 | Zhang JY, Zhang N, Liu YX, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage [J]. Sci China Life Sci, 2018, 61(6): 613-621. |
| 15 | Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci USA, 2015, 112(8): E911-E920. |
| 16 | Zhang F, Xu NH, Zhang ZY, et al. Shaping effects of rice, wheat, maize, and soybean seedlings on their rhizosphere microbial community [J]. Environ Sci Pollut Res Int, 2023, 30(13): 35972-35984. |
| 17 | Sohn SI, Oh YJ, Kim BY, et al. Effects of CaMSRB2-expressing transgenic rice cultivation on soil microbial communities [J]. J Microbiol Biotechnol, 2016, 26(7): 1303-1310. |
| 18 | Wu ZH, Liu QS, Li ZY, et al. Environmental factors shaping the diversity of bacterial communities that promote rice production [J]. BMC Microbiol, 2018, 18(1): 51. |
| 19 | Shi ZB, Yang YM, Fan YH, et al. Dynamic responses of rhizosphere microorganisms to biogas slurry combined with chemical fertilizer application during the whole life cycle of rice growth [J]. Microorganisms, 2023, 11(7): 1755. |
| 20 | Zhang JF, Yao ZM, Chen YL, et al. Study of rhizosphere microbial community structures of Asian wild and cultivated rice showed that cultivated rice had decreased and enriched some functional microorganisms in the process of domestication [J]. Diversity, 2022, 14(2): 67. |
| 21 | Li P, Ye SF, Chen J, et al. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism [J]. ISME Commun, 2023, 3: 4. |
| 22 | Navarro-Noya YE, Chávez-Romero Y, Hereira-Pacheco S, et al. Bacterial communities in the rhizosphere at different growth stages of maize cultivated in soil under conventional and conservation agricultural practices [J]. Microbiol Spectr, 2022, 10(2): e0183421. |
| 23 | 汤三明, 王志顺. 襄阳冬小麦生育关键期及抗逆性综合栽培措施 [J]. 种子科技, 2024, 42(13): 146-148. |
| Tang SM, Wang ZS. Comprehensive cultivation measures for the critical period of winter wheat fertility and resilience in Xiangyang [J] Seed Sci Technol, 2024, 42(13): 146-148. | |
| 24 | Wang J, Chen SM, Sun RB, et al. Spatial and temporal dynamics of the bacterial community under experimental warming in field-grown wheat [J]. PeerJ, 2023, 11: e15428. |
| 25 | Schlatter DC, Yin CT, Hulbert S, et al. Core rhizosphere microbiomes of dryland wheat are influenced by location and land use history [J]. Appl Environ Microbiol, 2020, 86(5): e02135-19. |
| 26 | Sun RX, Yi ZH, Fu YM, et al. Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment [J]. Appl Microbiol Biotechnol, 2022, 106(1): 441-453. |
| 27 | Ma Z, Yi ZH, Bayar K, et al. Community dynamics in rhizosphere microorganisms at different development stages of wheat growing in confined isolation environments [J]. Appl Microbiol Biotechnol, 2021, 105(9): 3843-3857. |
| 28 | Bourak K, Sare AR, Allaoui A, et al. Impact of two phosphorus fertilizer formulations on wheat physiology, rhizosphere, and rhizoplane microbiota [J]. Int J Mol Sci, 2023, 24(12): 9879. |
| 29 | Shrestha J, Kandel M, Chaudhary A. Effects of planting time on growth, development and productivity of maize (Zea mays L.) [J]. J Agric Nat Res, 2019, 1(1): 43-50. |
| 30 | Peiffer JA, Spor A, Koren O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions [J]. Proc Natl Acad Sci USA, 2013, 110(16): 6548-6553. |
| 31 | Cavaglieri L, Orlando J, Etcheverry M. Rhizosphere microbial community structure at different maize plant growth stages and root locations [J]. Microbiol Res, 2009, 164(4): 391-399. |
| 32 | Yang Y, Wang N, Guo XY, et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing [J]. PLoS One, 2017, 12(5): e0178425. |
| 33 | Benitez MS, Ewing PM, Osborne SL, et al. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance [J]. Soil Biol Biochem, 2021, 159: 108309. |
| 34 | Mehta S, Singh B, Patra A, et al. Maize microbiome: current insights for the sustainable agriculture [M]//Microbiomes and Plant Health. Amsterdam: Elsevier, 2021: 267-297. |
| 35 | Deng QX, Zhang T, Xie DT, et al. Rhizosphere microbial communities are significantly affected by optimized phosphorus management in a slope farming system [J]. Front Microbiol, 2021, 12: 739844. |
| 36 | Mao LT, Lai LE, Lin GG, et al. Differences in rhizosphere microbiota compositions between healthy and diseased potato (Solanum tuberosum) in China [J]. Appl Ecol Env Res, 2020, 18(2): 3683-3691. |
| 37 | 颜朗, 张义正, 清源, 等. 马铃薯全生育期内根际微生物组变化规律 [J]. 微生物学报, 2020, 60(2): 246-260. |
| Yan L, Zhang YZ, Qing Y, et al. Community rhythms of rhizosphere microbiome during the whole life cycle of potato [J]. Acta Microbiol Sin, 2020, 60(2): 246-260. | |
| 38 | Pfeiffer S, Mitter B, Oswald A, et al. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development [J]. FEMS Microbiol Ecol, 2017, 93(2): fiw242. |
| 39 | Hou Q, Wang WX, Yang Y, et al. Rhizosphere microbial diversity and community dynamics during potato cultivation [J]. Eur J Soil Biol, 2020, 98: 103176. |
| 40 | 李俊逸, 刘福翠, 矣晓翠, 等. 马铃薯块茎蛾取食胁迫对马铃薯根际细菌群落结构与多样性的影响 [J]. 南方农业学报, 2023, 54(12): 3599-3609. |
| Li JY, Liu FC, Yi XC, et al. Effects of feeding stress of Phthorimaea operculella potato rhizosphere bacteria community structure and diversity [J]. J South Agric, 2023, 54(12): 3599-3609. | |
| 41 | van Bergeijk DA, Terlouw BR, Medema MH, et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery [J]. Nat Rev Microbiol, 2020, 18(10): 546-558. |
| 42 | Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development [J]. ISME J, 2014, 8(4): 790-803. |
| 43 | Rao MPN, Luo ZH, Dong ZY, et al. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles [J]. Environ Res, 2022, 209: 112888. |
| 44 | Nascimento FX, Hernández AG, Glick BR, et al. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest [J]. Biotechnol Rep, 2019, 25: e00406. |
| 45 | Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria [J]. Res Microbiol, 2003, 154(3): 157-164. |
| 46 | Poveda J. Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses [J]. Crop Prot, 2021, 141: 105450. |
| 47 | Lin W, Deng AH, Wang Z, et al. Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the Phylum Nitrospirae [J]. ISME J, 2014, 8(12): 2463-2477. |
| 48 | Daims H, Lebedeva EV, Pjevac P, et al. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528(7583): 504-509. |
| 49 | Cohen JI. De novo sequencing and comparative transcriptomics of floral development of the distylous species Lithospermum multiflorum [J]. Front Plant Sci, 2016, 7: 1934. |
| 50 | Yu P, He XM, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation [J]. Nat Plants, 2021, 7(4): 481-499. |
| 51 | Zhang JY, Liu YX, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J]. Nat Biotechnol, 2019, 37(6): 676-684. |
| 52 | Hu B, Wang W, Ou SJ, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies [J]. Nat Genet, 2015, 47(7): 834-838. |
| 53 | Korenblum E, Massalha H, Aharoni A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy [J]. Plant Cell, 2022, 34(9): 3168-3182. |
| 54 | Jacoby RP, Koprivova A, Kopriva S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome [J]. J Exp Bot, 2021, 72(1): 57-69. |
| 55 | Neal AL, Ahmad S, Gordon-Weeks R, et al. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere [J]. PLoS One, 2012, 7(4): e35498. |
| 56 | Huang AC, Jiang T, Liu YX, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota [J]. Science, 2019, 364(6440): eaau6389. |
| 57 | Harbort CJ, Hashimoto M, Inoue H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis [J]. Cell Host Microbe, 2020, 28(6): 825-837.e6. |
| 58 | Santos-Medellín C, Liechty Z, Edwards J, et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome [J]. Nat Plants, 2021, 7(8): 1065-1077. |
| 59 | Castrillo G, Teixeira PJPL, Paredes SH, et al. Root microbiota drive direct integration of phosphate stress and immunity [J]. Nature, 2017, 543(7646): 513-518. |
| 60 | Mitri S, Clarke E, Foster KR. Resource limitation drives spatial organization in microbial groups [J]. ISME J, 2016, 10(6): 1471-1482. |
| 61 | Birch HF. Pattern of humus decomposition in east African soils [J]. Nature, 1958, 181: 788. |
| 62 | Ge JQ, Li D, Ding JX, et al. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: a review [J]. Environ Res, 2023, 222: 115298. |
| 63 | Chepsergon J, Moleleki LN. Rhizosphere bacterial interactions and impact on plant health [J]. Curr Opin Microbiol, 2023, 73: 102297. |
| 64 | Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes [J]. Nat Microbiol, 2020, 5(8): 1002-1010. |
| 65 | Butaitė E, Baumgartner M, Wyder S, et al. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities [J]. Nat Commun, 2017, 8(1): 414. |
| 66 | Souza JT, Raaijmakers JM. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp [J]. FEMS Microbiol Ecol, 2003, 43(1): 21-34. |
| 67 | Zhang QX, Xiong ZW, Li SY, et al. Regulatory roles of RpoS in the biosynthesis of antibiotics 2,4-diacetyphloroglucinol and pyoluteorin of Pseudomonas protegens FD6 [J]. Front Microbiol, 2022, 13: 993732. |
| 68 | Ranava D, Backes C, Karthikeyan G, et al. Metabolic exchange and energetic coupling between nutritionally stressed bacterial species: role of quorum-sensing molecules [J]. mBio, 2021, 12(1): e02758-20. |
| 69 | Shi SJ, Nuccio EE, Shi ZJ, et al. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages [J]. Ecol Lett, 2016, 19(8): 926-936. |
| 70 | Niu B, Paulson JN, Zheng XQ, et al. Simplified and representative bacterial community of maize roots [J]. Proc Natl Acad Sci USA, 2017, 114(12): E2450-E2459. |
| 71 | Diao FW, Jia BB, Luo JQ, et al. Arbuscular mycorrhizal fungi drive bacterial community assembly in halophyte Suaeda salsa [J]. Microbiol Res, 2024, 282: 127657. |
| 72 | Mony C, Vannier N, Burel F, et al. The root microlandscape of arbuscular mycorrhizal fungi [J]. New Phytol, 2024, 244(2): 394-406. |
| 73 | Tanunchai B, Ji L, Schroeter SA, et al. Tree mycorrhizal type regulates leaf and needle microbial communities, affects microbial assembly and co-occurrence network patterns, and influences litter decomposition rates in temperate forest [J]. Front Plant Sci, 2023, 14: 1239600. |
| 74 | Singavarapu B, Beugnon R, Bruelheide H, et al. Tree mycorrhizal type and tree diversity shape the forest soil microbiota [J]. Environ Microbiol, 2022, 24(9): 4236-4255. |
| 75 | Ajilogba CF, Olanrewaju OS, Babalola OO. Plant growth stage drives the temporal and spatial dynamics of the bacterial microbiome in the rhizosphere of Vigna subterranea [J]. Front Microbiol, 2022, 13: 825377. |
| 76 | Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment [J]. Nat Biotechnol, 2023, 41: 1716-1728. |
| 77 | Khoso MA, Wagan S, Alam I, et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective [J]. Plant Stress, 2024, 11: 100341. |
| 78 | Wu CX, Qiu LJ. The role of Rhizobium in legume crop enhancement: genetic insights and practical applications [J]. Lgg, 2024: 15. |
| 79 | Yu XC, Zhu HY. Enacting partner specificity in legume-rhizobia symbioses [J]. aBIOTECH, 2024: 1-17. |
| 80 | Dwivedi SL, Sahrawat KL, Upadhyaya HD, et al. Advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes [M]//Advances in Agronomy. Amsterdam: Elsevier, 2015: 1-116. |
| 81 | Yuan J, Zhao KK, Tan XF, et al. Perspective on the development of synthetic microbial community (SynCom) biosensors [J]. Trends Biotechnol, 2023, 41(10): 1227-1236. |
| 82 | Wilhelm RC, van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning [J]. Soil Biol Biochem, 2022, 164: 108472. |
| 83 | Goodswen SJ, Barratt JLN, Kennedy PJ, et al. Machine learning and applications in microbiology [J]. FEMS Microbiol Rev, 2021, 45(5): fuab015. |
| [1] | 叶柳健, 蒙健宗, 覃福方, 何双, 朱绮霞, 王小虎, 韦圣博, 周礼芹. 古茶树林菌株D2的鉴定、酶学特性及基因组学分析[J]. 生物技术通报, 2025, 41(5): 267-279. |
| [2] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
| [3] | 王颢杰, 常栋, 李俊营, 孟颢光, 蒋士君, 周硕野, 崔江宽. 不同生境下烤烟三段式育苗微生物群落变化及抗逆酶活分析[J]. 生物技术通报, 2024, 40(4): 242-254. |
| [4] | 刘佳宁, 李梦, 杨新森, 吴伟, 裴新梧, 袁潜华. 不同水分管理栽培方式对山栏稻根际土壤细菌群落的影响[J]. 生物技术通报, 2024, 40(3): 242-250. |
| [5] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
| [6] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
| [7] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
| [8] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
| [9] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
| [10] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
| [11] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
| [12] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
| [13] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
| [14] | 王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2): 54-65. |
| [15] | 赵佳, 黄静, 陈哲, 聂园军, 梁宏. 西瓜枯萎病拮抗菌Lh-1的鉴定及生物防治效果研究[J]. 生物技术通报, 2017, 33(4): 130-136. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||