生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 22-33.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0255

• 综述与专论 • 上一篇    下一篇

植物中直链淀粉合成及其含量提高策略的研究进展

王赛笛(), 张高阳(), 吕欢欢, 孙忠科, 李成伟()   

  1. 河南工业大学生物工程学院,郑州 450001
  • 收稿日期:2025-03-12 出版日期:2025-08-26 发布日期:2025-08-14
  • 通讯作者: 张高阳,男,博士,讲师,研究方向 :植物遗传合成;E-mail: gaoyangzhang@haut.edu.cn
    李成伟,男,博士,教授,研究方向 :主粮品质干预及加工;E-mail: lcw@haut.edu.cn
  • 作者简介:王赛笛,女,硕士研究生,研究方向 :主粮品质加工;E-mail: wangsaidi4900@stu.haut.edu.cn
  • 基金资助:
    河南省重大科技专项(231100110300);河南工业大学高层次人才基金(2021BS017)

Research Advances in Amylose Biosynthesis and Strategies for Enhancing Its Content in Plants

WANG Sai-di(), ZHANG Gao-yang(), LYU Huan-huan, SUN Zhong-ke, LI Cheng-wei()   

  1. College of Biological Engineering, Henan University of Technology, Zhengzhou 450001
  • Received:2025-03-12 Published:2025-08-26 Online:2025-08-14

摘要:

直链淀粉主要由α-1,4-糖苷键连接的D-吡喃葡萄糖单元组成,作为淀粉的重要组成部分,因其独特的分子结构和理化性能,在食品、工业和医药等领域应用广泛。直链淀粉对植物的品质有多方面的影响,不同遗传特性的植物直链淀粉含量不同,其对籽粒的加工特性以及加工后的淀粉质量、营养组成和食用口感都有重要的影响,对植物的生长发育、繁殖以及与生物非生物胁迫相关的抗逆性都有重要的影响。因此,提高植物中直链淀粉的含量应成为品质改良以及工业应用的热点。本文综述了直链淀粉的生物合成途径,分析了其合成的遗传调控,并从温度、植物生长调节剂和栽培措施等方面探讨了提高直链淀粉含量的策略,同时分析了当前直链淀粉含量提高的挑战和前景,旨在为相关研究提供参考,以推动植物中直链淀粉含量的提高,并促进其应用。

关键词: 直链淀粉, 淀粉代谢, 基因工程, 植物育种, 品质改良

Abstract:

Amylose, primarily composed of D-glucopyranose units linked by α-1,4-glycosidic bonds, is a critical component of starch. Its unique molecular structure and physicochemical properties underpin its broad applications in food, industrial, and pharmaceutical sectors. Amylose content varies across plant species with distinct genetic traits, significantly influencing grain processing characteristics, starch quality, nutritional composition, and textural properties of derived products. Furthermore, amylose plays essential roles in plant growth, development, reproduction, and stress resistance to biotic/abiotic challenges. Consequently, enhancing amylose content in plants has emerged as a pivotal target for both crop quality improvement and industrial utilization. This review systematically summarizes the biosynthetic pathways of amylose, analyzes its genetic regulatory mechanisms, and explores strategies to elevate amylose content through temperature modulation, plant growth regulators, and cultivation practices. Additionally, current challenges and future prospects in amylose enhancement are critically evaluated. The synthesis of this knowledge aims to provide a theoretical foundation for advancing research on amylose optimization and expanding its practical applications.

Key words: amylose, starch metabolism, genetic engineering, plant breeding, quality improvement