生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 42-52.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0171
彭钿钿1(
), 马云龙2, 许沛冬2, 陈迪2, 谢丙炎1,2(
), 李彦1(
)
收稿日期:2025-02-20
出版日期:2025-08-26
发布日期:2025-07-17
通讯作者:
谢丙炎,研究员,研究方向 :农业生物安全;E-mail: xiebingyan@caas.cn作者简介:彭钿钿,硕士研究生,研究方向 :植物保护;E-mail: 82101225301@caas.cn
基金资助:
PENG Tian-tian1(
), MA Yun-long2, XU Pei-dong2, CHEN Di2, XIE Bing-yan1,2(
), LI Yan1(
)
Received:2025-02-20
Published:2025-08-26
Online:2025-07-17
摘要:
植物病害的发生对作物经济效益构成了严重威胁,而化学农药的滥用则进一步加剧了对环境及人类健康的风险,因此,植物病害的生物防治策略被视为未来病害控制的主要趋势。当前,芽胞杆菌类生防微生物资源在植物病害防治中得到广泛应用,该类细菌通过多种机制发挥防病作用,包括靶向病原物进行竞争作用和分泌抑菌活性物质,直接抑制病原物的生长;靶向植物,通过根际定殖并形成生物膜、诱导植物系统抗性以及促生作用来提升植物的抗病性;同时,它们还能改善根际土壤环境,刺激土著有益微生物类群共同发挥作用,为植物健康生长创造有利条件。本文综述了芽胞杆菌类生防细菌在防治植物病害的作用机理及其作为生防菌剂的应用现状,并探讨了其在现代农业中的应用前景和面临的挑战,以期为后续此类生防微生物农药产品研发提供有价值的参考依据。
彭钿钿, 马云龙, 许沛冬, 陈迪, 谢丙炎, 李彦. 芽胞杆菌防治植物病害作用机制与应用[J]. 生物技术通报, 2025, 41(8): 42-52.
PENG Tian-tian, MA Yun-long, XU Pei-dong, CHEN Di, XIE Bing-yan, LI Yan. Mechanisms and Applications of Bacillus in Controlling Plant Diseases[J]. Biotechnology Bulletin, 2025, 41(8): 42-52.
农药名称 Pesticide name | 登记证号 Registration ID | 防治病害 Controlled disease | 开发公司 Company |
|---|---|---|---|
| 枯草芽胞杆菌HT1902 | PD20250009 | 黄瓜白粉病 | 陕西恒田生物农业有限公司 |
| 枯草芽胞杆菌 | PD20150091 | 水稻纹枯病、黄瓜灰霉病 | 河北中保绿农作物科技有限公司 |
| 枯草芽胞杆菌 | PD20141737 | 水稻稻瘟病、大白菜软腐病、黄瓜白粉病 | 山东惠民中联生物科技有限公司 |
| 枯草芽胞杆菌 | PD20160669 | 人参立枯病、草莓白粉病 | 美国拜沃股份有限公司 |
| 解淀粉芽胞杆菌LX-11 | PD20190018 | 水稻细菌性条斑病、白菜软腐病等 | 江苏省苏科农化有限责任公司 |
| 解淀粉芽胞杆菌B7900 | PD20160356 | 黄瓜角斑病、棉花黄萎病、水稻稻瘟病 | 陕西先农生物科技有限公司 |
| 解淀粉芽胞杆菌PQ21 | PD20171753 | 烟草黑胫病、烟草青枯病 | 江西大如生物有限公司 |
| 解淀粉芽胞杆菌QST713 | PD20211364 | 草莓灰霉病、番茄青枯病、番茄灰霉病等 | 拜耳股份有限公司 |
| 解淀粉芽胞杆菌AT-332 | PD20200657 | 草莓白粉病 | 日本史迪士生物科学株式会社 |
| 贝莱斯芽胞杆菌CGMCC NO.14384 | PD20211360 | 黄瓜白粉病、茶树炭疽病、烟草赤星病等 | 四川百事东旺生物科技有限公司 |
| 贝莱斯芽胞杆菌M173 | PD20250007 | 番茄青枯病 | 湖南慕恩生物科技有限公司 |
| 贝莱斯芽胞杆菌MBI600 | PD20250011 | 黄瓜根结线虫 | 澳大利亚纽发姆有限公司 |
| 坚强芽胞杆菌 | PD20184023 | 番茄、烟草根结线虫 | 江西大如生物有限公司 |
| 蜡质芽胞杆菌 | PD20212683 | 番茄根结线虫 | 山东惠民中联生物科技有限公司 |
| 多粘类芽胞杆菌P1 | PD20242642 | 黄瓜霜霉病 | 上海万力华生物科技有限公司 |
| 多粘类芽胞杆菌KN-03 | PD20184026 | 西瓜枯萎病、番茄青枯病、苹果根腐病 | 武汉科诺生物科技股份有限公司 |
| 海洋芽胞杆菌 | PD20142273 | 番茄青枯病、黄瓜灰霉病 | 浙江省桐庐汇丰生物科技有限公司 |
| 侧孢短芽胞杆菌A60 | PD20190035 | 辣椒疫病 | 陕西汤普森生物科技有限公司 |
| 杀线虫芽胞杆菌B16 | PD20211362 | 番茄根结线虫 | 云南大学 |
表1 国内外部分芽胞杆菌类微生物农药产品登记情况
Table 1 Registration status of the Bacillus microbial pesticides in China and abroad
农药名称 Pesticide name | 登记证号 Registration ID | 防治病害 Controlled disease | 开发公司 Company |
|---|---|---|---|
| 枯草芽胞杆菌HT1902 | PD20250009 | 黄瓜白粉病 | 陕西恒田生物农业有限公司 |
| 枯草芽胞杆菌 | PD20150091 | 水稻纹枯病、黄瓜灰霉病 | 河北中保绿农作物科技有限公司 |
| 枯草芽胞杆菌 | PD20141737 | 水稻稻瘟病、大白菜软腐病、黄瓜白粉病 | 山东惠民中联生物科技有限公司 |
| 枯草芽胞杆菌 | PD20160669 | 人参立枯病、草莓白粉病 | 美国拜沃股份有限公司 |
| 解淀粉芽胞杆菌LX-11 | PD20190018 | 水稻细菌性条斑病、白菜软腐病等 | 江苏省苏科农化有限责任公司 |
| 解淀粉芽胞杆菌B7900 | PD20160356 | 黄瓜角斑病、棉花黄萎病、水稻稻瘟病 | 陕西先农生物科技有限公司 |
| 解淀粉芽胞杆菌PQ21 | PD20171753 | 烟草黑胫病、烟草青枯病 | 江西大如生物有限公司 |
| 解淀粉芽胞杆菌QST713 | PD20211364 | 草莓灰霉病、番茄青枯病、番茄灰霉病等 | 拜耳股份有限公司 |
| 解淀粉芽胞杆菌AT-332 | PD20200657 | 草莓白粉病 | 日本史迪士生物科学株式会社 |
| 贝莱斯芽胞杆菌CGMCC NO.14384 | PD20211360 | 黄瓜白粉病、茶树炭疽病、烟草赤星病等 | 四川百事东旺生物科技有限公司 |
| 贝莱斯芽胞杆菌M173 | PD20250007 | 番茄青枯病 | 湖南慕恩生物科技有限公司 |
| 贝莱斯芽胞杆菌MBI600 | PD20250011 | 黄瓜根结线虫 | 澳大利亚纽发姆有限公司 |
| 坚强芽胞杆菌 | PD20184023 | 番茄、烟草根结线虫 | 江西大如生物有限公司 |
| 蜡质芽胞杆菌 | PD20212683 | 番茄根结线虫 | 山东惠民中联生物科技有限公司 |
| 多粘类芽胞杆菌P1 | PD20242642 | 黄瓜霜霉病 | 上海万力华生物科技有限公司 |
| 多粘类芽胞杆菌KN-03 | PD20184026 | 西瓜枯萎病、番茄青枯病、苹果根腐病 | 武汉科诺生物科技股份有限公司 |
| 海洋芽胞杆菌 | PD20142273 | 番茄青枯病、黄瓜灰霉病 | 浙江省桐庐汇丰生物科技有限公司 |
| 侧孢短芽胞杆菌A60 | PD20190035 | 辣椒疫病 | 陕西汤普森生物科技有限公司 |
| 杀线虫芽胞杆菌B16 | PD20211362 | 番茄根结线虫 | 云南大学 |
| [1] | Ristaino JB, Anderson PK, Bebber DP, et al. The persistent threat of emerging plant disease pandemics to global food security [J]. Proc Natl Acad Sci USA, 2021, 118(23): e2022239118. |
| [2] | Almeida F, Rodrigues ML, Coelho C. The still underestimated problem of fungal diseases worldwide [J]. Front Microbiol, 2019, 10: 214. |
| [3] | Raza W, Ling N, Zhang RF, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies [J]. Crit Rev Biotechnol, 2017, 37(2): 202-212. |
| [4] | Lahlali R, Ezrari S, Radouane N, et al. Biological control of plant pathogens: a global perspective [J]. Microorganisms, 2022, 10(3): 596. |
| [5] | Cun HC, Munir S, He PF, et al. Diversity of root endophytic bacteria from maize seedling involved in biocontrol and plant growth promotion [J]. Egypt J Biol Pest Control, 2022, 32(1): 129. |
| [6] | Karačić V, Miljaković D, Marinković J, et al. Bacillus species: excellent biocontrol agents against tomato diseases [J]. Microorganisms, 2024, 12(3): 457. |
| [7] | Xia X, Wei Q, Wu H, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot [J]. Microbiome, 2024, 12(1): 156. |
| [8] | Zhang N, Wang Z, Shao J, et al. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture [J]. Microb Biotechnol, 2023, 16(12): 2250-2263. |
| [9] | Li HY, Han X, Dong YJ, et al. Bacillaenes: decomposition trigger point and biofilm enhancement in Bacillus [J]. ACS Omega, 2021, 6(2): 1093-1098. |
| [10] | Zou XL, Ning JQ, Zhao XJ, et al. Bacillus velezensis LY7 promotes pepper growth and induces resistance to Colletotrichum scovillei [J]. Biol Control, 2024, 192: 105480. |
| [11] | Yang BY, Zheng MZ, Dong WP, et al. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment [J]. Microbiol Spectr, 2023, 11(2): e0361122. |
| [12] | Keshmirshekan A, de Souza Mesquita LM, Ventura SPM. Biocontrol manufacturing and agricultural applications of Bacillus velezensis [J]. Trends Biotechnol, 2024, 42(8): 986-1001. |
| [13] | Cho SJ, Park SR, Kim MKet al. Endophytic Bacillus sp. isolated from the interior of balloon flower root [J]. Biosci Biotechnol Biochem, 2002, 66(6): 1270-1275. |
| [14] | Ho TH, Chuang CY, Zheng JL, et al. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato [J]. Phytopathology, 2020, 110(12): 1877-1885. |
| [15] | Hashem A, Tabassum B, Fathi Abd_Allah E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress [J]. Saudi J Biol Sci, 2019, 26(6): 1291-1297. |
| [16] | Luo L, Zhao CZ, Wang ET, et al. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms [J]. Microbiol Res, 2022, 259: 127016. |
| [17] | Xue YT, Zhang YG, Huang K, et al. A novel biocontrol agent Bacillus velezensis K01 for management of gray mold caused by Botrytis cinerea [J]. AMB Express, 2023, 13(1): 91. |
| [18] | Alfiky A, L'Haridon F, Abou-Mansour E, et al. Disease inhibiting effect of strain Bacillus subtilis EG21 and its metabolites against potato pathogens Phytophthora infestans and Rhizoctonia solani [J]. Phytopathology, 2022, 112(10): 2099-2109. |
| [19] | Cui WY, He PJ, Munir S, et al. Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight [J]. Biol Control, 2019, 139: 104080. |
| [20] | Wu YC, Zhou JY, Li CG, et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens [J]. Microbiologyopen, 2019, 8(8): e00813. |
| [21] | Cui WY, He PJ. Genome sequence resource of Bacillus velezensis strain HC-8, a native bacterial endophyte with biocontrol potential against the honeysuckle powdery mildew causative pathogen Erysiphe lonicerae var. lonicerae [J]. Mol Plant Microbe Interact, 2022, 35(8): 719-722. |
| [22] | Dobrzyński J, Jakubowska Z, Kulkova I, et al. Biocontrol of fungal phytopathogens by Bacillus pumilus [J]. Front Microbiol, 2023, 14: 1194606. |
| [23] | Huang YH, Li JH, Shan XY, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus tequilensis QNF2 inhibiting apple ring rot caused by Botryosphaeria dothidea on postharvest apple fruits [J]. Food Microbiol, 2024, 123: 104590. |
| [24] | Zhang MY, Li XJ, Pan YB, et al. Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato Fusarium wilt disease during fruit postharvest and planting [J]. Microbiol Res, 2024, 283: 127694. |
| [25] | Zhang YF, Yang YM, Zhang LY, et al. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide [J]. Front Microbiol, 2023, 14: 1201624. |
| [26] | Wei Z, Yang TJ, Friman VP, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health [J]. Nat Commun, 2015, 6: 8413. |
| [27] | Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments [J]. Front Physiol, 2017, 8: 667. |
| [28] | Bacon CW, Yates IE, Hinton DM, et al. Biological control of Fusarium moniliforme in maize [J]. Environ Health Perspect, 2001, 109(): 325-332. |
| [29] | Chuljerm H, Deeudom M, Fucharoen S, et al. Characterization of two siderophores produced by Bacillus megaterium: A preliminary investigation into their potential as therapeutic agents [J]. Biochim Biophys Acta Gen Subj, 2020, 1864(10): 129670. |
| [30] | Chandwani S, Dewala S, Chavan SM, et al. Genomic, LC-ms, and ftir analysis of plant probiotic potential of Bacillus albus for managing Xanthomonas oryzae via different modes of application in rice (Oryza sativa L.) [J]. Probiotics Antimicrob Proteins, 2024, 16(5): 1541-1552. |
| [31] | Chowdhury SP, Hartmann A, Gao XW, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review [J]. Front Microbiol, 2015, 6: 780. |
| [32] | Boulahouat S, Cherif-Silini H, Silini A, et al. Biocontrol efficiency of rhizospheric Bacillus against the plant pathogen Fusarium oxysporum: a promising approach for sustainable agriculture [J]. Microbiol Res, 2023, 14(3): 892-908. |
| [33] | Juturu V, Wu JC. Microbial production of bacteriocins: Latest research development and applications [J]. Biotechnol Adv, 2018, 36(8): 2187-2200. |
| [34] | Lajis AFB. Biomanufacturing process for the production of bacteriocins from Bacillaceae family [J]. Bioresour Bioprocess, 2020, 7(1): 8. |
| [35] | Mercado V, Olmos J. Bacteriocin production by Bacillus species: isolation, characterization, and application [J]. Probiotics Antimicrob Proteins, 2022, 14(6): 1151-1169. |
| [36] | Salazar F, Ortiz A, Sansinenea E. Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity [J]. J Glob Antimicrob Resist, 2017, 11: 177-182. |
| [37] | Santos R, Oliva-Teles A, Saavedra M, et al. Bacillus spp. as source of natural antimicrobial compounds to control aquaculture bacterial fish pathogens [J]. Front Mar Sci, 2018, 5: 129. |
| [38] | Zaid DS, Cai SY, Hu C, et al. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects [J]. Microbiol Spectr, 2022, 10(1): e0216921. |
| [39] | Özcengiz G, Öğülür İ. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic [J]. N Biotechnol, 2015, 32(6): 612-619. |
| [40] | Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review [J]. Physiol Mol Plant Pathol, 2022, 117: 101754. |
| [41] | Scholz R, Vater J, Budiharjo A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42 [J]. J Bacteriol, 2014, 196(10): 1842-1852. |
| [42] | Wu LM, Wu HJ, Chen LN, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens [J]. Sci Rep, 2015, 5: 12975. |
| [43] | Bakker C, Graham HR, Popescu I, et al. Fungal membrane determinants affecting sensitivity to antifungal cyclic lipopeptides from Bacillus spp [J]. Fungal Biol, 2024, 128(7): 2080-2088. |
| [44] | Yu FT, Shen YY, Qin YL, et al. Isolation and purification of antibacterial lipopeptides from Bacillus velezensis YA215 isolated from sea mangroves [J]. Front Nutr, 2022, 9: 1064764. |
| [45] | Saiyam D, Dubey A, Malla MA, et al. Lipopeptides from Bacillus: unveiling biotechnological prospects-sources, properties, and diverse applications [J]. Braz J Microbiol, 2024, 55(1): 281-295. |
| [46] | Wan CP, Fan XY, Lou ZX, et al. Iturin: cyclic lipopeptide with multifunction biological potential [J]. Crit Rev Food Sci Nutr, 2022, 62(29): 7976-7988. |
| [47] | Jin PF, Wang HN, Tan Z, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz [J]. Pestic Biochem Physiol, 2020, 163: 102-107. |
| [48] | Wang JH, Qiu JY, Yang XY, et al. Identification of lipopeptide iturin a produced by Bacillus amyloliquefaciens NCPSJ7 and its antifungal activities against Fusarium oxysporum f.sp. niveum [J]. Foods, 2022, 11(19): 2996. |
| [49] | Wang YY, Zhang CY, Liang J, et al. Iturin a extracted from Bacillus subtilis WL-2 affects Phytophthora infestans via cell structure disruption, oxidative stress, and energy supply dysfunction [J]. Front Microbiol, 2020, 11: 536083. |
| [50] | Théatre A, Hoste AR, Rigolet A, et al. Bacillus sp. a remarkable source of bioactive lipopeptides [J]. Adv Biochem Eng Biotechnol, 2022, 181: 123-179. |
| [51] | Deng YJ, Chen Z, Chen YP, et al. Lipopeptide C17 fengycin B exhibits a novel antifungal mechanism by triggering metacaspase-dependent apoptosis in Fusarium oxysporum [J]. J Agric Food Chem, 2024, 72(14): 7943-7953. |
| [52] | Hanif A, Zhang F, Li PP, et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis [J]. Toxins, 2019, 11(5): 295. |
| [53] | Sarwar A, Hassan MN, Imran M, et al. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease [J]. Microbiol Res, 2018, 209: 1-13. |
| [54] | Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol [J]. Trends Microbiol, 2008, 16(3): 115-125. |
| [55] | Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species [J]. J Biotechnol, 2018, 285: 44-55. |
| [56] | Chen L, Xu XX, Sun YX, et al. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms [J]. World J Microbiol Biotechnol, 2023, 39(12): 340. |
| [57] | Chen QQ, Qiu Y, Yuan YZ, et al. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato [J]. Front Microbiol, 2022, 13: 994716. |
| [58] | Leconte A, Jacquin J, Duban M, et al. Deciphering the mechanisms involved in reduced sensitivity to azoles and fengycin lipopeptide in Venturia inaequalis [J]. Microbiol Res, 2024, 286: 127816. |
| [59] | Olishevska S, Nickzad A, Déziel E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens [J]. Appl Microbiol Biotechnol, 2019, 103(3): 1189-1215. |
| [60] | Salazar F, Ortiz A, Sansinenea E. A strong antifungal activity of 7-O-succinyl macrolactin a vs macrolactin a from Bacillus amyloliquefaciens ELI149 [J]. Curr Microbiol, 2020, 77(11): 3409-3413. |
| [61] | Saxena AK, Kumar M, Chakdar H, et al. Bacillus species in soil as a natural resource for plant health and nutrition [J]. J Appl Microbiol, 2020, 128(6): 1583-1594. |
| [62] | Zhang D, Yu SQ, Yang YQ, et al. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato [J]. Front Microbiol, 2020, 11: 1196. |
| [63] | Shobha G, Bs K. Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum [J]. Int J Appl Sci Eng Res, 2012, 1(3): 463-474. |
| [64] | Yin N, Liu R, Zhao JL, et al. Volatile organic compounds of Bacillus cereus strain bc-Cm103 exhibit fumigation activity against Meloidogyne incognita [J]. Plant Dis, 2021, 105(4): 904-911. |
| [65] | Dimopoulou A, Theologidis I, Benaki D, et al. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600 [J]. mSphere, 2021, 6(4): e0037621. |
| [66] | Liu Y, Tao J, Yan YJ, et al. Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase [J]. Chin J Chem Eng, 2011, 19(1): 128-134. |
| [67] | Ji ZL, Peng S, Chen LL, et al. Identification and characterization of a serine protease from Bacillus licheniformis W10: a potential antifungal agent [J]. Int J Biol Macromol, 2020, 145: 594-603. |
| [68] | Song S, Jeon EK, Hwang CW. Characteristic analysis of soil-isolated Bacillus velezensis HY-3479 and its antifungal activity against phytopathogens [J]. Curr Microbiol, 2022, 79(12): 357. |
| [69] | Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase [J]. Nature, 2001, 411(6839): 813-817. |
| [70] | Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biol Biochem, 2010, 42(5): 669-678. |
| [71] | Govindasamy V, Senthilkumar M, Magheshwaran V, et al. Bacillus and Paenibacillus spp. potential PGPR for sustainable agriculture [M]//Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 333-364. |
| [72] | Xie SS, Jiang L, Wu Q, et al. Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum infection [J]. Phytopathology, 2022, 112(9): 1886-1893. |
| [73] | Zhong XF, Jin YY, Ren H, et al. Research progress of Bacillus velezensis in plant disease resistance and growth promotion [J]. Front Ind Microbiol, 2024, 2: 1442980. |
| [74] | Arnaouteli S, Bamford NC, Stanley-Wall NR, et al. Bacillus subtilis biofilm formation and social interactions [J]. Nat Rev Microbiol, 2021, 19(9): 600-614. |
| [75] | Cao Y, Zhang ZH, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biol Fertil Soils, 2011, 47(5): 495-506. |
| [76] | Myo EM, Liu BH, Ma JJ, et al. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion [J]. Biol Control, 2019, 134: 23-31. |
| [77] | Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life [J]. Nat Rev Microbiol, 2016, 14(9): 563-575. |
| [78] | Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants [J]. Environ Microbiol, 2007, 9(4): 1084-1090. |
| [79] | Appu M, Ramalingam P, Sathiyanarayanan A, et al. An overview of plant defense-related enzymes responses to biotic stresses [J]. Plant Gene, 2021, 27: 100302. |
| [80] | Jiang CH, Fan ZH, Li ZJ, et al. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis [J]. Mol Plant Pathol, 2020, 21(6): 854-870. |
| [81] | Li ZR, Hu JN, Sun Q, et al. A novel elicitor protein phosphopentomutase from Bacillus velezensis LJ02 enhances tomato resistance to Botrytis cinerea [J]. Front Plant Sci, 2022, 13: 1064589. |
| [82] | Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, et al. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3 [J]. Biol Control, 2013, 65(1): 109-117. |
| [83] | Ramakrishna W, Yadav R, Li KF. Plant growth promoting bacteria in agriculture: Two sides of a coin [J]. Appl Soil Ecol, 2019, 138: 10-18. |
| [84] | Yan YC, Xu WH, Hu YL, et al. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt [J]. Biol Control, 2022, 172: 104977. |
| [85] | Idris EE, Iglesias DJ, Talon M, et al. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42 [J]. Mol Plant Microbe Interact, 2007, 20(6): 619-626. |
| [86] | Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria [J]. World J Microbiol Biotechnol, 2017, 33(11): 197. |
| [87] | Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake [J]. J Soil Sci Plant Nutr, 2021, 21(1): 49-68. |
| [88] | de O Nunes PS, de Medeiros FHV, de Oliveira TS, et al. Bacillus subtilis and Bacillus licheniformis promote tomato growth [J]. Braz J Microbiol, 2023, 54(1): 397-406. |
| [89] | Samaras A, Roumeliotis E, Ntasiou P, et al. Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens [J]. Plants, 2021, 10(6): 1113. |
| [90] | Tzipilevich E, Russ D, Dangl JL, et al. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria [J]. Cell Host Microbe, 2021, 29(10): 1507-1520.e4. |
| [91] | Gaiero JR, McCall CA, Thompson KA, et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion [J]. Am J Bot, 2013, 100(9): 1738-1750. |
| [92] | Haskett TL, Tkacz A, Poole PS. Engineering rhizobacteria for sustainable agriculture [J]. ISME J, 2021, 15(4): 949-964. |
| [93] | Yang DY, Zhang XQ, Li ZX, et al. Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon [J]. J Appl Microbiol, 2024, 135(5): lxae074. |
| [94] | Huang Z, Ruan ST, Sun YY, et al. Bacterial inoculants improved the growth and nitrogen use efficiency of Pyrus betulifolia under nitrogen-limited conditions by affecting the native soil bacterial communities [J]. Appl Soil Ecol, 2022, 170: 104285. |
| [95] | Soares AS, Nascimento VL, de Oliveira EE, et al. Pseudomonas aeruginosa and Bacillus cereus isolated from Brazilian cerrado soil act as phosphate-solubilizing bacteria [J]. Curr Microbiol, 2023, 80(5): 146. |
| [96] | Nakkeeran S, Rajamanickam S, Saravanan R, et al. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt [J]. 3 Biotech, 2021, 11(6): 267. |
| [97] | El Youssfi C, Soujaa H, El Hammoudani Y, et al. Overview of insights into the role of Bacillus species in drought stress alleviation and plant disease management [J]. E3S Web Conf, 2024, 527: 03010. |
| [98] | Tao CY, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression [J]. Microbiome, 2020, 8(1): 137. |
| [99] | Wang N, Ding J, Chen YT, et al. Bacillus velezensis BER1 enriched Flavobacterium daejeonense-like bacterium in the rhizosphere of tomato against bacterial wilt [J]. FEMS Microbiol Ecol, 2023, 99(6): fiad054. |
| [100] | Ngalimat MS, Yahaya RSR, Baharudin MMA, et al. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens [J]. Microorganisms, 2021, 9(3): 614. |
| [101] | Serrão CP, Ortega JCG, Rodrigues PC, et al. Bacillus species as tools for biocontrol of plant diseases: a meta-analysis of twenty-two years of research, 2000-2021 [J]. World J Microbiol Biotechnol, 2024, 40(4): 110. |
| [102] | Ahmad Zahir Z, Ahmad M, et al. Field evaluation of multistrain biofertilizer for improving the productivity of different mungbean genotypes [J]. Soil Environ, 2018, 37(1): 45-52. |
| [103] | Khan AR, Mustafa A, Hyder S, et al. Bacillus spp. as bioagents: uses and application for sustainable agriculture [J]. Biology, 2022, 11(12): 1763. |
| [1] | 石艳华, 李朔, 高玉珠, 郑保坤, 朱杰华, 张岱, 杨志辉. 贝莱斯芽胞杆菌NZ-4挥发性有机物的促生作用及其活性成分分析[J]. 生物技术通报, 2025, 41(8): 300-310. |
| [2] | 董栩焜, 车永梅, 王明硕, 罗政刚, 管恩森, 赵方贵, 叶青, 刘新. 纳米硅和蜡样芽胞杆菌SS1共处理对烟草生长的影响[J]. 生物技术通报, 2025, 41(7): 292-298. |
| [3] | 张津浩, 邓辉, 张清壮, 陶禹, 周池, 李鑫. 贝莱斯芽胞杆菌XY40-1对百合球茎生长、品质及镉含量的调控作用[J]. 生物技术通报, 2025, 41(7): 281-291. |
| [4] | 张越, 毕钰, 慕雪男, 郑子薇, 王志刚, 徐伟慧. 小麦赤霉病拮抗菌JB7的生防特性[J]. 生物技术通报, 2025, 41(7): 261-271. |
| [5] | 张慧, 卢文才, 王冬, 刘倩, 马连杰. 一株高产吲哚乙酸的Bacillus cereus YT2-1C的鉴定及促生作用[J]. 生物技术通报, 2025, 41(5): 300-309. |
| [6] | 张吉昌, 许云凤, 蒋凌雁. 柱花草内生细菌ZW21发酵条件优化及其抑菌物质稳定性测定[J]. 生物技术通报, 2025, 41(5): 280-289. |
| [7] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
| [8] | 刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297. |
| [9] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
| [10] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
| [11] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
| [12] | 韩钟娆, 霍毅欣, 郭淑元. 芽胞杆菌耐受胁迫条件的机制及工业应用[J]. 生物技术通报, 2024, 40(8): 24-38. |
| [13] | 崔嫚, 邵改革, 杨诺林, 范庆昊, 张金威, 田雨, 郑素月, 张瑞颖. 微生物对食用菌生长发育影响的研究进展[J]. 生物技术通报, 2024, 40(5): 13-22. |
| [14] | 许沛冬, 易剑锋, 陈迪, 陈浩, 谢丙炎, 赵文军. 组学技术在生防芽胞杆菌的应用进展[J]. 生物技术通报, 2024, 40(10): 208-220. |
| [15] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||