生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 1-21.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0645

• 综述与专论 •    下一篇

RNA干扰在植物功能基因组学和遗传改良中的应用研究进展

黄雯婧(), 任思潮, 林俐, 王幼平, 吴健()   

  1. 扬州大学生物科学与技术学院,扬州 225000
  • 收稿日期:2025-06-19 出版日期:2025-09-26 发布日期:2025-09-24
  • 通讯作者: 吴健,男,博士,副教授,研究方向 :植物抗病分子遗传;E-mail: wu_jian@yzu.edu.cn
  • 作者简介:黄雯婧,女,研究方向 :植物抗病分子机制;E-mail: 222101206@stu.yzu.edu.cn
  • 基金资助:
    江苏省基础研究专项资金(自然科学基金)杰出青年基金项目(BK20240046);国家自然科学基金项目(32072020);国家级大学生创新训练计划项目(202411117084Z)

Advances in RNA Interference Technology for Plant Functional Genomics and Crop Improvement

HUANG Wen-jing(), REN Si-chao, LIN Li, WANG You-ping, WU Jian()   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225000
  • Received:2025-06-19 Published:2025-09-26 Online:2025-09-24

摘要:

RNA干扰(RNA interference, RNAi)是一种由双链RNA(double-stranded RNA, dsRNA)介导,具有序列特异性的基因沉默机制,广泛存在于真核生物中。其分子机制主要包括dsRNA的加工、小干扰RNA(small interfering RNA, siRNA)或微RNA(microRNA, miRNA)的生成,以及RNA诱导沉默复合体介导的靶mRNA的特异性降解或翻译抑制。基于该机制的RNAi技术已成为植物功能基因组学研究的强大工具,并在作物抗病虫遗传改良与绿色防控领域展现出巨大潜力。本文系统综述了RNAi的发现历程、分子机制及其应用,重点探讨其三大核心应用:病毒诱导基因沉默(virus-induced gene silencing, VIGS)利用工程化病毒载体实现寄主基因的瞬时沉默,为植物基因功能研究提供了高效手段;寄主诱导基因沉默(host-induced gene silencing, HIGS)通过植物体内表达的RNAi分子靶向沉默病原体或者害虫的关键基因,旨在培育具有对真菌、病毒及害虫持久抗性的转基因作物;喷雾诱导基因沉默(spray-induced gene silencing, SIGS)作为一种非转基因策略,通过喷施设计的靶向dsRNA,经靶标病原体或害虫摄取后抑制其关键基因表达,从而干扰其侵染/为害过程,为病虫害防控提供了一种环境友好的新型策略。未来,RNAi技术的进一步发展有望得益于合成生物学、人工智能与纳米递送系统的深度融合,以优化靶标设计、提升沉默效率并降低脱靶风险。随着关键技术的突破与应用瓶颈的克服,RNAi在推动植物科学研究和实现可持续农业发展方面具有广阔的应用前景。

关键词: RNA干扰, 病毒诱导基因沉默, 寄主诱导基因沉默, 喷雾诱导基因沉默, 跨界RNAi, 基因沉默, 双链RNA, 病虫害防治

Abstract:

RNA interference (RNAi) is a sequence-specific gene silencing mechanism mediated by double-stranded RNA (dsRNA) and conserved in eukaryotes. Its molecular mechanism primarily involves the processing of dsRNA, the generation of small interfering RNA (siRNA) or microRNA (miRNA), and the sequence-specific degradation or translational inhibition of target mRNA mediated by the RNA-induced silencing complex (RISC). Based on this mechanism, RNAi technology has become a powerful tool for plant functional genomics research and demonstrates immense potential in the genetic improvement of crops for resistance to diseases and pests, as well as in green and sustainable pest control. This review systematically summarizes the discovery history and molecular mechanism of RNAi and focuses on its three core applications: Virus-induced gene silencing (VIGS) utilizes engineered viral vectors to achieve transient silencing of host genes, providing an efficient approach for plant gene functional studies. Host-induced gene silencing (HIGS) aims to breed transgenic crops with durable resistance to fungi, viruses, and pests by expressing RNAi molecules within the plant to target and silence key genes in pathogens or pests. Spray-induced gene silencing (SIGS), as a non-transgenic strategy, involves spraying designed target-specific dsRNA. Upon uptake by the target pathogen or pest, this dsRNA inhibits the expressions of their key genes, thereby interfering with their infection/infestation process, offering a novel, environmentally friendly strategy for disease and pest control. In the future, further advancements in RNAi technology are expected to benefit from the deep integration of synthetic biology, artificial intelligence, and nano-delivery systems to optimize target design, enhance silencing efficiency, and reduce off-target risks. With breakthroughs in key technologies and the overcoming of application bottlenecks, RNAi holds exceptionally broad application prospects for advancing plant science research and achieving sustainable agriculture.

Key words: RNA interference, virus-induced gene silencing, host-induced gene silencing, spray-induced gene silencing, cross-kingdom RNAi, gene silencing, double-stranded RNA, disease and pest control