生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 124-135.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0385
华炫(), 田博雯, 周欣彤, 江梓涵, 王诗琦, 黄倩慧, 张健(
), 陈艳红(
)
收稿日期:
2024-04-23
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
张健,男,博士,教授,研究方向:园林植物抗逆分子调控机制与育种;E-mail: yjnkyy@ntu.edu.cn;作者简介:
华炫,女,研究方向:园林植物抗逆分子调控机制与育种;E-mail: 610757303@qq.com
基金资助:
HUA Xuan(), TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian(
), CHEN Yan-hong(
)
Received:
2024-04-23
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】验证SmERF B3-45是否在植物响应盐胁迫中起着正向调控的作用,为揭示AP2/ERF转录因子在调控旱柳耐盐性中的作用奠定基础。【方法】分析旱柳AP2/ERF超家族中SmERF B3-45的启动子区顺式作用元件,利用特异性引物克隆得到SmERF B3-45的CDS全长序列,对其进行生物信息学和亚细胞定位分析,并通过过表达载体的构建转化拟南芥突变体ERF-OE1、ERF-OE2和进行病毒诱导的基因沉默(VIGS)阐明其功能。【结果】顺式作用元件分析表明,SmERF B3-45可能参与逆境胁迫响应表达调控途径。RT-qPCR结果显示,NaCl处理可诱导SmERF B3-45的表达,且该基因在旱柳的不同组织中广泛表达。亚细胞定位显示,SmERF B3-45蛋白定位于细胞核。转基因拟南芥中,SmERF B3-45的表达量大幅提高,在盐胁迫条件下,与野生型相比,过表达SmERF B3-45拟南芥的根长显著增加,总蛋白含量、Na+含量、MDA含量和Na+/K+显著降低,CAT含量和K+含量显著升高。基因沉默植株显著下调了SmERF B3-45的表达水平,与对照相比,基因沉默植株的总蛋白含量显著降低,而MDA和脯氨酸含量却显著高于阴性对照植株,并且沉默植株出现了叶片萎蔫,表明SmERF B3-45的沉默降低了旱柳的耐盐性。【结论】SmERF B3-45是植物响应盐胁迫的正向调控转录因子。
华炫, 田博雯, 周欣彤, 江梓涵, 王诗琦, 黄倩慧, 张健, 陈艳红. 旱柳SmERF B3-45的克隆及耐盐功能研究[J]. 生物技术通报, 2024, 40(12): 124-135.
HUA Xuan, TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian, CHEN Yan-hong. Cloning SmERF B3-45 from Salix matsudana and Functional Analysis on Its Tolerance to Salt[J]. Biotechnology Bulletin, 2024, 40(12): 124-135.
图1 AP2/ERF家族分类 红星表示Soloist 亚家族成员含有保守程度较低的AP2结构域
Fig. 1 AP2/ERF family classification The red star indicates that members of the Soloist subfamily contain AP2 domains with a lower degree of conservatism
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
SmERF B3-45F | ATGTCGCAAGGAGGGAACA |
SmERF B3-45R | TCATTTTCTTCTCTTGGGC |
pWM101-SmERF B3-45F | TCGAGCTTTCGCGAGCTCGGTACCATGTCGCAAGGAGGGAACA |
pWM101-SmERF B3-45R | GCATGCCTGCAGGTCGACTCTAGATCATTTTCTTCTCTTGGGC |
P2300-SmERF B3-45F | GACGAGCTGTACAAGGGATCCATGTCGCAAGGAGGGAACA |
P2300-SmERF B3-45R | CTGCAGGTCGACTCTAGATCATCATTTTCTTCTCTTGGGC |
qPCR-SmERF B3-45F | AGCAAGGATGTGGCTTGGAA |
qPCR- SmERF B3-45R | CTTCTCTTGGGCGAGCCATC |
TRV2- SmERF B3-45F | TAAGGTTACCGAATTCTCGCAAGGAGGGAACAACAG |
TRV2- SmERF B3-45R | CGAGACGCGTGAGCTCTCTTACACGCCACTTCCACC |
表1 本研究所用引物信息
Table 1 Information of primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
SmERF B3-45F | ATGTCGCAAGGAGGGAACA |
SmERF B3-45R | TCATTTTCTTCTCTTGGGC |
pWM101-SmERF B3-45F | TCGAGCTTTCGCGAGCTCGGTACCATGTCGCAAGGAGGGAACA |
pWM101-SmERF B3-45R | GCATGCCTGCAGGTCGACTCTAGATCATTTTCTTCTCTTGGGC |
P2300-SmERF B3-45F | GACGAGCTGTACAAGGGATCCATGTCGCAAGGAGGGAACA |
P2300-SmERF B3-45R | CTGCAGGTCGACTCTAGATCATCATTTTCTTCTCTTGGGC |
qPCR-SmERF B3-45F | AGCAAGGATGTGGCTTGGAA |
qPCR- SmERF B3-45R | CTTCTCTTGGGCGAGCCATC |
TRV2- SmERF B3-45F | TAAGGTTACCGAATTCTCGCAAGGAGGGAACAACAG |
TRV2- SmERF B3-45R | CGAGACGCGTGAGCTCTCTTACACGCCACTTCCACC |
种类Type | 功能 Function | 元件 Element | 数目 Amount |
---|---|---|---|
光响应元件Light responsive elements | 光响应Light responsiveness | G-box | 5 |
TCT-motif | 2 | ||
Box 4 | 4 | ||
ATCT-motif | 1 | ||
AT1-motif | 1 | ||
I-box | 1 | ||
激素响应元件Phytohormone responsive elements | 脱落酸响应Abscisic acid responsiveness | ABRE | 6 |
赤霉素响应Gibberellin-responsiveness | TATC-box | 1 | |
逆境响应元件Stress responsive elements | 抗氧Antioxidant | O2-site | 1 |
干旱、盐和低温响应 Drought, salt and low temperature responsive | MYB | 1 |
表2 SmERF B3-45启动子区顺式作用元件预测结果
Table 2 Predicted results of cis-acting elements in the SmERF B3-45 promoter region
种类Type | 功能 Function | 元件 Element | 数目 Amount |
---|---|---|---|
光响应元件Light responsive elements | 光响应Light responsiveness | G-box | 5 |
TCT-motif | 2 | ||
Box 4 | 4 | ||
ATCT-motif | 1 | ||
AT1-motif | 1 | ||
I-box | 1 | ||
激素响应元件Phytohormone responsive elements | 脱落酸响应Abscisic acid responsiveness | ABRE | 6 |
赤霉素响应Gibberellin-responsiveness | TATC-box | 1 | |
逆境响应元件Stress responsive elements | 抗氧Antioxidant | O2-site | 1 |
干旱、盐和低温响应 Drought, salt and low temperature responsive | MYB | 1 |
图3 SmERF B3-45的克隆和植物表达载体的构建 A:SmERF B3-45的PCR扩增产物的电泳检测;B:过表达载体pWM101-SmERF B3-45单酶切(BamH I)验证;C:VIGS中pYL1561- SmERF B3-45载体双酶切(EcoR I+Sal I)验证;D:亚细胞定位p2300-SmERF B3-45载体双酶切(Kpn I+Sal I)验证
Fig. 3 Cloning of SmERF B3-45 and construction of plant expression vector construction A: PCR amplification product detection of SmERF B3-45. B: Overexpression vector pWM101-SmERF B3-45 single enzyme digestion(BamH I)verification. C: VIGS vector pYL1561-SmERF B3-45 double enzyme digestion(EcoR I+Sal I)verification. D: Subcellular localization vector p2300-SmERF B3-45 double enzyme digestion(Kpn I+Sal I)verification
图4 SmERF B3-45及其同源物的系统发生树构建和蛋白质比对 A:系统进化树;B:同源蛋白比对。Sabra14G0034100:白柳;Potri.014G047000、Potri.003G150700、Potri.003G150800:毛果杨; Gohir.D08G067700:棉花;BraA04t18813Z、BraA05t19475Z:白菜型油菜;Manes.05G054400:木薯;AT2G44840_ERF13、AT2G31230_ERF15、AT4G17490_ERF6:拟南芥。SmERF B3-45蛋白与其直系蛋白质中有一个AP2结构域,已用红色线标记
Fig. 4 Phylogenetic tree construction and protein alignment on SmERF B3-45 protein and its homologs A: Phylogenetic tree. B: Homologous protein alignment. Sabra14G0034100: S. alba; Potri.014G047000, Potri.003G150700, Potri.003G150800: Populus alba; Gohir.D08G067700: G. herbaceum; BraA04t18813Z, BraA05t19475Z: B. rapa; Manes.05G054400: M. esculenta; AT2G44840_ERF13, AT2G31230_ERF15, AT4G17490_ERF6: Arabidopsis thaliana. The SmERF B3-45 protein shares an AP2 domain with its orthologous proteins, which has been marked with a red line
图5 SmERF B3-45的表达谱分析 A:SmERF B3-45在旱柳不同组织中的表达;B:经200 mmol/L NaCl处理0, 4, 8和12 h后SmERF B3-45的表达。不同小写字母表示显著差异(P<0.05),下同
Fig. 5 Expression pattern analysis of SmERF B3-45 A: Expressions of SmERF B3-45 in different tissues of Salix matsudana. B: Expressions of SmERF B3-45 after treatment with 200 mmol/L NaCl for 0, 4, 8 and 12 h. Different small letters indicate significant differences(P<0.05). The same below
图6 SmERF B3-45蛋白的亚细胞定位分析 A:激光共聚焦显微镜明场,显示叶片细胞的气孔结构;B:GFP信号通道显示SmERF B3-45蛋白的定位信号;C:mCherry信号通道显示组蛋白H2B核定位信号;D:为A、B、C通道叠加,显示SmERF B3-45蛋白的定位信号和组蛋白H2B核定位信号共定位
Fig. 6 Subcellular localization analysis of SmERF B3-45 protein A: Laser confocal microscopy to display the stomatal structure of leaf cells.B: GFP signal channel displays the localization signal of SmERF B3-45 protein. C: mCherry signal channel displays histone H2B nuclear localization signals.D: Overlay of channels of A, B, and C, display co-localization of SmERF B3-45 protein localization signal and histone H2B nuclear localization signal
图7 SmERF B3-45拟南芥过表达株系的表型分析 A:0和100 mmol/L NaCl处理7 d后各株系的生长情况;B:0和100 mmol/L NaCl处理7 d后各株系根长的统计
Fig. 7 Phenotypic analysis of SmERF B3-45 overexpressing transgenic Arabidopsis thaliana lines A: Growth conditions of various lines after treatment with 0 and 100 mmol/L NaCl for 7 d. B: Statistical analysis of root length of various lines after treatment with 0 and 100 mmol/L NaCl for 7 d
图9 SmERF B3-45沉默降低柳树对盐胁迫的抗性 A:转基因植株中SmERF B3-45的表达;B:100 mmol/L NaCl处理后,植株的生长情况,红色箭头所示叶片出现严重萎蔫、枯萎和凋落现象;C:总蛋白含量;D:MDA含量;E:脯氨酸含量。pTRV2:阴性对照植株;pTRV2- SmERF B3-45-1、pTRV2- SmERF B3-45-2、pTRV2- SmERF B3-45-3为基因沉默植株
Fig. 9 Silencing SmERF B3-45 through VIGS compromised the tolerance in willow to salt A: Expression of SmERF B3-45 in transgenic plants. B: Growth condition of plants after treatment with 100 mmol/L NaCl, where the red arrows indicate severe wilting, withering, and leaf drop phenomena. C: Total protein content. D: MDA content. E: Proline content. pTRV2: Negative control plants. pTRV2-SmERF B3-45-1, pTRV2-SmERF B3-45-2, pTRV2-SmERF B3-45-3: Gene-silenced plants
[1] | Ahmad Bhat M, Mishra AK, Jan S, et al. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction[J]. Plants, 2023, 12(3): 629. |
[2] | Arshad Ullah M. Niazboo(Ocimum basilicum)as medicinal plant establishes against salinity and sodicity[J]. Adv Biotechnol Microbiol, 2019, 12(5): 555846. |
[3] | 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158. |
Li B, Wang ZC, Sun ZG, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agric Res Arid Areas, 2005, 23(2): 154-158. | |
[4] | Wang GZ, Ni G, Li, et al. JFSaline-alkali soil reclamation and utilization in China:progress and prospects[J]. Frontiers of Agricultural Science and Engineering, 2024, 11(2): 216-28. |
[5] | 盐碱地渔业开发技术与服务共享平台, https://www.ecsf.ac.cn/info/1133/3547.htm[2017-11-16]. |
Technology and Service Sharing Platform for Saline Fisheries Development, https://www.ecsf.ac.cn/info/1133/3547.htm[2017-11-16]. | |
[6] |
王才林, 张亚东, 赵凌, 等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1): 1-6.
doi: 10.3969/j.issn.1006-8082.2019.01.001 |
Wang CL, Zhang YD, Zhao L, et al. Research status, problems and suggestions on salt-alkali tolerant rice[J]. China Rice, 2019, 25(1): 1-6.
doi: 10.3969/j.issn.1006-8082.2019.01.001 |
|
[7] | Wang HL, Li C, Wang LD, et al. GmABR1 encoding an ERF transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana[J]. Front Plant Sci, 2023, 14: 1125245. |
[8] | Zhang J, Shi SZ, Jiang YN, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9: e11076. |
[9] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[10] | Ma ZM, Jin YM, Wu T, et al. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice[J]. Front Plant Sci, 2022, 13: 1007811. |
[11] | Pagliarini RF, Marinho JP, Molinari MDC, et al. Overexpression of full-length and partial DREB2A enhances soybean drought tolerance[J]. Agron Sci Biotechnol, 2021, 8: 1-21. |
[12] | Shi HZ, Quintero FJ, Pardo JM, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants[J]. Plant Cell, 2002, 14(2): 465-477. |
[13] |
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant J, 2002, 29(1): 23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224 |
[14] | Lv Kw, Li J, Zhao K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species[J]. Plant Sci, 2020, 292: 110375. |
[15] |
Wu Lj, Chen Xl, Ren Hy, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4): 815-825.
doi: 10.1007/s00425-007-0528-9 pmid: 17479283 |
[16] |
Huang Q, Sun MH, Yuan TP, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Food Chem, 2019, 274: 368-375.
doi: S0308-8146(18)31531-0 pmid: 30372953 |
[17] | Qu YJ, Nong QD, Jian SG, et al. An AP2/ERF gene, HuERF1, from pitaya(Hylocereus undatus)positively regulates salt tolerance[J]. Int J Mol Sci, 2020, 21(13): 4586. |
[18] | Fu JY, Zhu CY, Wang C, et al. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2021, 159: 257-267. |
[19] | Cao BB, Shu LX, Li A. Functional characterization of LkERF-B2 for improved salt tolerance ability in Arabidopsis thaliana[J]. Biotech, 2019, 9(7): 263. |
[20] | Yang H, Yu C, Yan J, et al. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco[J]. Biochemistry, 2014, 79(11): 1226-1236. |
[21] | Zhao MJ, Yin LJ, Liu Y, et al. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean[J]. BMC Plant Biol, 2019, 19(1): 506. |
[22] | Liu YJ, Chen S, Chen JD, et al. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant(Camellia sinensis)[J]. BMC Plant Biol, 2023, 23(1): 206. |
[23] | 徐俊, 章法源, 安树康. 旱柳育苗造林技术规程[J]. 乡村科技, 2020, 11(34): 84-85. |
Xu J, Zhang FY, An SK. Technical specification for seedling raising and afforestation of Salix matsudana[J]. Rural Science and Technology, 2020, 11(34): 84-85. | |
[24] | 张博. 旱柳育苗造林技术研究[J]. 特种经济动植物, 2023, 26(1): 145-147. |
Zhang B. Study on seedling raising and afforestation techniques of Salix matsudana[J]. Spec Econ Anim Plants, 2023, 26(1): 145-147. | |
[25] | Chen YH, Dai YH, Li YX, et al. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5[J]. BMC Plant Biol, 2022, 22(1): 102. |
[26] | Kang HG, Kim J, Kim B, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana[J]. Plant Sci, 2011, 180(4): 634-641. |
[27] | Xie JM, Chen YR, Cai GJ, et al. Tree Visualization By One Table(tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Res, 2023, 51(W1): W587-W592. |
[28] |
Li HG, Zhang DF, Xie K, et al. Efficient and high-throughput pseudorecombinant-chimeric cucumber mosaic virus-based VIGS in maize[J]. Plant Physiol, 2021, 187(4): 2865-2876.
doi: 10.1093/plphys/kiab443 pmid: 34606612 |
[29] |
Shen ZD, Sun J, Yao J, et al. High rates of virus-induced gene silencing by tobacco rattle virus in Populus[J]. Tree Physiol, 2015, 35(9): 1016-1029.
doi: 10.1093/treephys/tpv064 pmid: 26209619 |
[30] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Curr Opin Plant Biol, 2014, 21: 133-139.
doi: S1369-5266(14)00106-X pmid: 25104049 |
[31] |
Sparkes IA, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nat Protoc, 2006, 1(4): 2019-2025.
doi: 10.1038/nprot.2006.286 pmid: 17487191 |
[32] | Liang YN, Jiang YL, Du M, et al. ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2019, 20(9): 2278. |
[33] | Hu W, Huang C, Deng XM, et al. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco[J]. Plant, Cell Environ, 2013, 36(8): 1449-1464. |
[34] | Song Y, Gao MX, Xu ZX, et al. Temporal and spatial characteristics of soil salinization and its impact on cultivated land productivity in the BOHAI rim region[J]. Water, 2023, 15(13): 2368. |
[35] | 王世平, 陈月, 潘大伟, 等. 盐碱地治理研究综述: 现状、问题与对策[J]. 化工矿物与加工, 2023, 52(11): 59-68. |
Wang SP, Chen Y, Pan DW, et al. Review on salt marshes management: Status, problems and countermeasures[J]. Ind Miner Process, 2023, 52(11): 59-68. | |
[36] | Li WJ, Sun J, Zhang XQ, et al. The mechanisms underlying salt resistance mediated by exogenous application of 24-epibrassinolide in peanut[J]. Int J Mol Sci, 2022, 23(12): 6376. |
[37] | Wang LR, Du M, Wang B, et al. Transcriptome analysis of halophyte Nitraria tangutorum reveals multiple mechanisms to enhance salt resistance[J]. Sci Rep, 2022, 12(1): 14031. |
[38] | Guo M, Wang XS, Guo HD, et al. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review[J]. Front Plant Sci, 2022, 13: 949541. |
[39] | Ma X, Zhang Q, Ou YB, et al. Transcriptome and low-affinity sodium transport analysis reveals salt tolerance variations between two poplar trees[J]. Int J Mol Sci, 2023, 24(6): 5732. |
[40] | Guo JR, Shan CD, Zhang YF, et al. Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants[J]. Front Plant Sci, 2022, 13: 854116. |
[41] | Xie W, Ding CQ, Hu HT, et al. Molecular events of rice AP2/ERF transcription factors[J]. Int J Mol Sci, 2022, 23(19): 12013. |
[42] |
Xie ZL, Nolan TM, Jiang H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci, 2019, 10: 228.
doi: 10.3389/fpls.2019.00228 pmid: 30873200 |
[43] | Dietz KJ, Vogel MO, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Protoplasma, 2010, 245(1/2/3/4): 3-14. |
[44] | Zhang J, Yuan HW, Li YJ, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz[J]. Hortic Res, 2020, 7(1): 201. |
[45] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6): 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[46] | Chen WS, Shi Y, Wang CY, et al. AtERF13 and AtERF6 double knockout fine-tunes growth and the transcriptome to promote cadmium tolerance in Arabidopsis[J]. Gene, 2024, 911: 148348. |
[47] | Wang CY, Gao ZQ, Shi Y, et al. Metal-responsive elements confer cadmium response in Arabidopsis[J]. Planta, 2023, 257(3): 53. |
[48] | Kawaguchi J, Hayashi K, Desaki Y, et al. JUL1, Ring-type E3 ubiquitin ligase, is involved in transcriptional reprogramming for ERF15-mediated gene regulation[J]. Int J Mol Sci, 2023, 24(2): 987. |
[49] |
Dubois M, Van den Broeck L, Claeys H, et al. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis[J]. Plant Physiol, 2015, 169(1): 166-179.
doi: 10.1104/pp.15.00335 pmid: 25995327 |
[50] | Ding H, Cui SY, Cui XY, et al. Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus[J]. Br J Pharmacol, 2021, 178(18): 3696-3707. |
[51] | Luo DJ, Lu H, Wang CJ, et al. Physiological and DNA methylation analysis provides epigenetic insights into kenaf cadmium tolerance heterosis[J]. Plant Sci, 2023, 331: 111663. |
[52] |
Harris PJ, Burrell MM, Emes MJ, et al. Effects of post-anthesis high-temperature stress on carbon partitioning and starch biosynthesis in a spring wheat(Triticum aestivum L.) adapted to moderate growth temperatures[J]. Plant Cell Physiol, 2023, 64(7): 729-745.
doi: 10.1093/pcp/pcad030 pmid: 37026703 |
[53] |
Chen TZ, Li WJ, Hu XH, et al. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J]. Plant Cell Physiol, 2015, 56(5): 917-929.
doi: 10.1093/pcp/pcv019 pmid: 25657343 |
[54] |
Zhang LC, Liu GX, Zhao GY, et al. Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis[J]. Plant Cell Physiol, 2014, 55(10): 1802-1812.
doi: 10.1093/pcp/pcu109 pmid: 25146486 |
[55] | Jia T, Hou JR, Iqbal MZ, et al. Overexpression of the white clover TrSAMDC1 gene enhanced salt and drought resistance in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2021, 165: 147-160. |
[1] | 李彩霞, 李艺, 穆宏秀, 林俊轩, 白龙强, 孙美华, 苗妍秀. 中国南瓜bHLH转录因子家族的鉴定与生物信息学分析[J]. 生物技术通报, 2025, 41(1): 186-197. |
[2] | 田栩瑞, 霍信屹, 郭云涵, 向林, 产祝龙, 王艳平. 百合LoSAUR10基因的表达特征及功能分析[J]. 生物技术通报, 2025, 41(1): 221-229. |
[3] | 袁柳娇, 黄文琳, 陈崇志, 梁敏, 黄梓淇, 陈雪雪, 陈日檬, 王锂韫. 盐胁迫对广藿香叶片生理特性、超微结构及药效成分的影响[J]. 生物技术通报, 2025, 41(1): 230-239. |
[4] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[5] | 乔岩, 杨芳, 任盼荣, 祁伟亮, 安沛沛, 李茜, 李丹, 肖俊飞. 马铃薯野生种烯酰水合酶超家族基因ScDHNS的克隆与功能分析[J]. 生物技术通报, 2024, 40(9): 92-103. |
[6] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[7] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[8] | 沈真辉, 曹瑶, 杨林雷, 罗祥英, 子灵山, 陆青青, 李荣春. 金耳和毛韧革菌麦角硫因生物合成基因的克隆及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 259-272. |
[9] | 黄丹, 姜山, 彭涛. 褐角苔FfCYP98基因克隆及其功能分析[J]. 生物技术通报, 2024, 40(7): 273-284. |
[10] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[11] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[12] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[13] | 杜泽光, 任少文, 张凤勤, 李梅兰, 李改珍, 齐仙惠. 大白菜BrMLP328的克隆、表达及功能验证[J]. 生物技术通报, 2024, 40(4): 122-129. |
[14] | 李慧, 文钰芳, 王悦, 纪超, 石国优, 罗英, 周勇, 李志敏, 吴晓玉, 杨有新, 刘建萍. 盐胁迫下辣椒CaPIF4的表达特性与功能分析[J]. 生物技术通报, 2024, 40(4): 148-158. |
[15] | 刘换换, 杨立春, 李火根. 北美鹅掌楸LtMYB305基因的克隆及功能分析[J]. 生物技术通报, 2024, 40(4): 179-188. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||