生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 22-31.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0276
• 综述与专论 • 下一篇
收稿日期:2025-03-14
出版日期:2025-09-26
发布日期:2025-08-06
通讯作者:
李彬,男,博士,教授,研究方向 :中药分析新技术与新方法;E-mail: binli@cpu.edu.cn作者简介:刘语诗,女,硕士研究生,研究方向 :天然产物的生物合成;E-mail: liuyushikassy@163.com
基金资助:
LIU Yu-shi(
), LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin(
)
Received:2025-03-14
Published:2025-09-26
Online:2025-08-06
摘要:
质谱成像技术是一种新型分子成像技术,具有免标记、高覆盖、高灵敏度等优势,广泛应用于代谢物的组织分布研究。随着该技术的不断发展,基于质谱成像的空间代谢组学技术应运而生,该技术将质谱成像与代谢组学深度融合,能够同时实现组织中代谢物的空间定位与成像分析,研究对象涵盖动物、植物、微生物等。近年来,空间代谢组学技术在药用植物研究中展现出巨大的应用潜力,成为精准定位组织中代谢物空间分布的关键技术之一。本文首先介绍了空间代谢组学技术的基本原理和实验流程,比较了基质辅助激光解吸电离质谱成像(MALDI-MSI)、解吸电喷雾电离质谱成像(DESI-MSI)和二次离子质谱成像(SIMS-MSI)等主流质谱成像技术的特长与局限性,以及样本制备与数据处理等关键环节的技术要点。重点综述了空间代谢组学技术在药用植物研究中的应用进展,包括如何应用空间代谢组学技术揭示药用植物代谢产物组织分布与累积规律,助力药用植物代谢产物的生物合成与转运机制解析及其生物合成相关功能基因的挖掘。最后探讨了空间代谢组学技术目前面临的挑战与未来发展的方向,以期为药用植物研究提供全新的研究视角。
刘语诗, 李镇, 邹宇琛, 汤维维, 李彬. 药用植物空间代谢组学研究进展[J]. 生物技术通报, 2025, 41(9): 22-31.
LIU Yu-shi, LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin. Advances in Spatial Metabolomics in Medicinal Plants[J]. Biotechnology Bulletin, 2025, 41(9): 22-31.
| Year | Species | Sample type | Image resolution (μm) | Imaging techniques | Analytes | Reference |
|---|---|---|---|---|---|---|
| 2017 | Hypericum perforatum L. | Root | 5 | MALDI | Xanthone | [ |
| 2017 | Tripterygium wilfordii Hook. f. | Root | 50 | MALDI | Triterpenoids, alkaloids | [ |
| 2018 | Ginkgo biloba L. | Leaf | 50 | MALDI | Flavonoids, organic acids, ginkgolides | [ |
| 2019 | Curcuma longa L. | Root | 5-25 | MALDI | Curcumin | [ |
| 2021 | Paeonia suffruticosa Andrews. Paeonia lactiflora Pall. | Root | 35 | MALDI | Paeonol glycosides, tannins, flavonoids | [ |
| 2021 | Panax. notoginseng (Burkill) F. H. Chen ex C. H. | Root | 100 | MALDI | Notoginsenoside | [ |
| 2021 | Asclepias curassavica L. | Leaf | 20-45 | MALDI | Cardiac glycosides | [ |
| 2021 | Lycium chinense Mill. | Fruit | 25 | MALDI | Flavonoids, organic acids, alkaloids | [ |
| 2021 | Catharanthus roseus (L.) G. Don | Petal | 250-500 | SALDI | Monoterpenoid indole alkaloids | [ |
| 2022 | Coptis chinensis Franch. | Rhizome | 1 | SIMS | Alkaloids | [ |
| 2022 | Salvia miltiorrhiza Bunge. | Root, stem, leaf, petal | 100 | DESI | Flavonoids, phenolic acids, tanshinones | [ |
| 2022 | Isatis tinctoria L. | Root | 80 | DESI | Sulfur-containing compounds, alkaloids | [ |
| 2023 | Salvia miltiorrhiza Bunge Salvia grandifolia W. W. Sm. | Root, leaf | 100-200 | DESI | Terpenes, phenolic acids, tanshinones | [ |
| 2023 | Nelumbo nucifera Gaertn. | Leaf, seed plumule, milky sap | 30 | MALDI | Benzylisoquinoline alkaloids | [ |
| 2023 | Pueraria lobata (Willd.) Ohwi Pueraria thomsonii Benth. | Root | 50 | AFADESI | Phenolic acids, flavonoids | [ |
| 2023 | Angelica sinensis (Oliv.) Diels | Root | 35 | MALDI | Volatile oil | [ |
| 2023 | Taxus wallichiana var.chinensis (Pilg.) Florin | Leaf | 20 | MALDI | Taxanes, flavonoids, coumarins | [ |
| 2023 | Rauvolfia tetraphylla L. | Root, stem, leaf, fruit | 15-20 300 | MALDI DESI | Monoterpenoid indole alkaloids | [ |
| 2024 | Scutellaria baicalensis Georgi | Root, stem | 10 | MALDI | Flavonoids, organic acids | [ |
| 2024 | Panax quinquefolius L. | Root | 120 | DESI | Saponins | [ |
| 2024 | Cyclocarya paliurus (Batalin) Iljinsk. | Leaf | 200 | DESI | Phenylpropanoids, flavonoids, triterpenes | [ |
| 2024 | Fagopyrum tataricum (L.) Gaertn. | Achene | 20 | MALDI | Flavonoids, phenolic acids | [ |
| 2024 | Angelicae Dahuricae Radix | Root | 40 | MALDI | Coumarins | [ |
| 2025 | Atractylodes lancea rhizome | Root, stems | 200 | DESI | Volatile oil | [ |
| 2025 | Fritillaria cirrhosa D. Don Fritillaria thunbergii Miq. Fritillaria usuriensis Maxim. | Bulb | 75 | DESI | Alkaloid | [ |
| 2025 | Camellia sinensis (L.) Kuntze | Root, leaf, bud | 100 | DESI | Triterpenoid saponins | [ |
表1 空间代谢组学技术在药用植物研究中的应用
Table 1 Applications of spatial metabolomics technology in medicinal plants
| Year | Species | Sample type | Image resolution (μm) | Imaging techniques | Analytes | Reference |
|---|---|---|---|---|---|---|
| 2017 | Hypericum perforatum L. | Root | 5 | MALDI | Xanthone | [ |
| 2017 | Tripterygium wilfordii Hook. f. | Root | 50 | MALDI | Triterpenoids, alkaloids | [ |
| 2018 | Ginkgo biloba L. | Leaf | 50 | MALDI | Flavonoids, organic acids, ginkgolides | [ |
| 2019 | Curcuma longa L. | Root | 5-25 | MALDI | Curcumin | [ |
| 2021 | Paeonia suffruticosa Andrews. Paeonia lactiflora Pall. | Root | 35 | MALDI | Paeonol glycosides, tannins, flavonoids | [ |
| 2021 | Panax. notoginseng (Burkill) F. H. Chen ex C. H. | Root | 100 | MALDI | Notoginsenoside | [ |
| 2021 | Asclepias curassavica L. | Leaf | 20-45 | MALDI | Cardiac glycosides | [ |
| 2021 | Lycium chinense Mill. | Fruit | 25 | MALDI | Flavonoids, organic acids, alkaloids | [ |
| 2021 | Catharanthus roseus (L.) G. Don | Petal | 250-500 | SALDI | Monoterpenoid indole alkaloids | [ |
| 2022 | Coptis chinensis Franch. | Rhizome | 1 | SIMS | Alkaloids | [ |
| 2022 | Salvia miltiorrhiza Bunge. | Root, stem, leaf, petal | 100 | DESI | Flavonoids, phenolic acids, tanshinones | [ |
| 2022 | Isatis tinctoria L. | Root | 80 | DESI | Sulfur-containing compounds, alkaloids | [ |
| 2023 | Salvia miltiorrhiza Bunge Salvia grandifolia W. W. Sm. | Root, leaf | 100-200 | DESI | Terpenes, phenolic acids, tanshinones | [ |
| 2023 | Nelumbo nucifera Gaertn. | Leaf, seed plumule, milky sap | 30 | MALDI | Benzylisoquinoline alkaloids | [ |
| 2023 | Pueraria lobata (Willd.) Ohwi Pueraria thomsonii Benth. | Root | 50 | AFADESI | Phenolic acids, flavonoids | [ |
| 2023 | Angelica sinensis (Oliv.) Diels | Root | 35 | MALDI | Volatile oil | [ |
| 2023 | Taxus wallichiana var.chinensis (Pilg.) Florin | Leaf | 20 | MALDI | Taxanes, flavonoids, coumarins | [ |
| 2023 | Rauvolfia tetraphylla L. | Root, stem, leaf, fruit | 15-20 300 | MALDI DESI | Monoterpenoid indole alkaloids | [ |
| 2024 | Scutellaria baicalensis Georgi | Root, stem | 10 | MALDI | Flavonoids, organic acids | [ |
| 2024 | Panax quinquefolius L. | Root | 120 | DESI | Saponins | [ |
| 2024 | Cyclocarya paliurus (Batalin) Iljinsk. | Leaf | 200 | DESI | Phenylpropanoids, flavonoids, triterpenes | [ |
| 2024 | Fagopyrum tataricum (L.) Gaertn. | Achene | 20 | MALDI | Flavonoids, phenolic acids | [ |
| 2024 | Angelicae Dahuricae Radix | Root | 40 | MALDI | Coumarins | [ |
| 2025 | Atractylodes lancea rhizome | Root, stems | 200 | DESI | Volatile oil | [ |
| 2025 | Fritillaria cirrhosa D. Don Fritillaria thunbergii Miq. Fritillaria usuriensis Maxim. | Bulb | 75 | DESI | Alkaloid | [ |
| 2025 | Camellia sinensis (L.) Kuntze | Root, leaf, bud | 100 | DESI | Triterpenoid saponins | [ |
| [1] | Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources [J]. Chin J Nat Med, 2024, 22(3): 195-211. |
| [2] | Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future [J]. Science, 2016, 353(6305): 1232-1236. |
| [3] | Watson BS, Urbanczyk-Wochniak E, Lei ZT. Proceedings of the Plant Biology & Botany 2007 [C]. Chicago: American Society of Plant Biologists & Botanical Society of America, 2007. |
| [4] | Sun CL, Li TG, Song XW, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations [J]. Proc Natl Acad Sci USA, 2019, 116(1): 52-57. |
| [5] | Li B, Bhandari DR, Janfelt C, et al. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging [J]. Plant J, 2014, 80(1): 161-171. |
| [6] | Yamamoto K, Takahashi K, Mizuno H, et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS [J]. Proc Natl Acad Sci USA, 2016, 113(14): 3891-3896. |
| [7] | Yan X, Zhao XA, Zhou ZP, et al. Cell-type-specific metabolic profiling achieved by combining desorption electrospray ionization mass spectrometry imaging and immunofluorescence staining [J]. Anal Chem, 2020, 92(19): 13281-13289. |
| [8] | Wang MQ, Cai KD, Li ZP, et al. Quantitative accuracy assessment of trace elements and halogens in apatite by time-of-flight secondary ion mass spectrometry (TOF-SIMS) [J]. J Anal At Spectrom, 2024, 39(6): 1609-1615. |
| [9] | Chingin K, Gamez G, Chen HW, et al. Rapid classification of perfumes by extractive electrospray ionization mass spectrometry (EESI-MS) [J]. Rapid Commun Mass Spectrom, 2008, 22(13): 2009-2014. |
| [10] | Rabbani S, Barber AM, Fletcher JS, et al. TOF-SIMS with Argon gas cluster ion beams: a comparison with C60+ [J]. Anal Chem, 2011, 83(10): 3793-3800. |
| [11] | Jung S, Foston M, Kalluri UC, et al. 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass [J]. Angew Chem Int Ed, 2012, 51(48): 12005-12008. |
| [12] | Kakouridis A, Yuan MT, Nuccio EE, et al. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter [J]. New Phytol, 2024, 242(4): 1661-1675. |
| [13] | Honeker LK, Hildebrand GA, Fudyma JD, et al. Elucidating drought-tolerance mechanisms in plant roots through 1H NMR metabolomics in parallel with MALDI-MS, and NanoSIMS imaging techniques [J]. Environ Sci Technol, 2022, 56(3): 2021-2032. |
| [14] | Bredehöft J, Bhandari DR, Pflieger FJ, et al. Visualizing and profiling lipids in the OVLT of fat-1 and wild type mouse brains during LPS-induced systemic inflammation using AP-SMALDI MSI [J]. ACS Chem Neurosci, 2019, 10(10): 4394-4406. |
| [15] | Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques [J]. Mass Spectrom Rev, 2016, 35(1): 147-169. |
| [16] | Heijs B, Potthoff A, Soltwisch J, et al. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging [J]. Anal Chem, 2020, 92(20): 13904-13911. |
| [17] | Li XP, Hang L, Wang TT, et al. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry [J]. J Am Chem Soc, 2021, 143(51): 21648-21656. |
| [18] | Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces [J]. Nat Methods, 2017, 14(12): 1156-1158. |
| [19] | He JM, Tang F, Luo ZG, et al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application [J]. Rapid Commun Mass Spectrom, 2011, 25(7): 843-850. |
| [20] | Liu CY, Qi KK, Yao L, et al. Imaging of polar and nonpolar species using compact desorption electrospray ionization/postphotoionization mass spectrometry [J]. Anal Chem, 2019, 91(10): 6616-6623. |
| [21] | Buchberger AR, DeLaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights [J]. Anal Chem, 2018, 90(1): 240-265. |
| [22] | Hansen RL, Lee YJ. High-spatial resolution mass spectrometry imaging: toward single cell metabolomics in plant tissues [J]. Chem Rec, 2018, 18(1): 65-77. |
| [23] | Goto-Inoue N, Hayasaka T, Zaima N, et al. Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin [J]. PLoS One, 2012, 7(11): e49519. |
| [24] | Gemperline E, Jayaraman D, Maeda J, et al. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS [J]. J Am Soc Mass Spectrom, 2015, 26(1): 149-158. |
| [25] | Cha S, Zhang H, Ilarslan HI, et al. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry [J]. Plant J, 2008, 55(2): 348-360. |
| [26] | Wu LT, Qi KK, Liu CY, et al. Enhanced coverage and sensitivity of imprint DESI mass spectrometry imaging for plant leaf metabolites by post-photoionization [J]. Anal Chem, 2022, 94(43): 15108-15116. |
| [27] | Hu H, Qiu KD, Hao QC, et al. Electromagnetic field-assisted frozen tissue planarization enhances MALDI-MSI in plant spatial omics [J]. Anal Chem, 2024, 96(29): 11809-11822. |
| [28] | Zhu XP, Xu TY, Peng C, et al. Advances in MALDI mass spectrometry imaging single cell and tissues [J]. Front Chem, 2022, 9: 782432. |
| [29] | Li B, Sun RY, Gordon A, et al. 3-aminophthalhydrazide (luminol) as a matrix for dual-polarity MALDI MS imaging [J]. Anal Chem, 2019, 91(13): 8221-8228. |
| [30] | Wu R, Jiang DX, Hu H, et al. 4-Aminoazobenzene: a novel negative ion matrix for enhanced MALDI tissue imaging of metabolites [J]. Chin Chem Lett, 2024, 35(11): 109624. |
| [31] | Tang WW, Gordon A, Wang F, et al. Hydralazine as a versatile and universal matrix for high-molecular coverage and dual-polarity matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Anal Chem, 2021, 93(26): 9083-9093. |
| [32] | Chen YW, Hu DJ, Zhao LS, et al. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix [J]. Anal Chim Acta, 2022, 1192: 339337. |
| [33] | Song XW, Li C, Meng YF. Mass spectrometry imaging advances and application in pharmaceutical research [J]. Acta Mater Med, 2022, 1(4): 507-533. |
| [34] | Ràfols P, Vilalta D, Brezmes J, et al. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications [J]. Mass Spectrom Rev, 2018, 37(3): 281-306. |
| [35] | Verbeeck N, Caprioli RM, Van de Plas R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry [J]. Mass Spectrom Rev, 2020, 39(3): 245-291. |
| [36] | Hu H, Laskin J. Emerging computational methods in mass spectrometry imaging [J]. Adv Sci, 2022, 9(34): e2203339. |
| [37] | Li D, Qian Y, Yao HM, et al. DeepS: accelerating 3D mass spectrometry imaging via a deep neural network [J]. Anal Chem, 2023, 95(29): 10879-10886. |
| [38] | Tang WW, Li Z, Zou YC, et al. A multimodal pipeline for image correction and registration of mass spectrometry imaging with microscopy [J]. Anal Chim Acta, 2023, 1283: 341969. |
| [39] | Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence [J]. Annu Rev Biomed Data Sci, 2020, 3: 61-87. |
| [40] | Schramm T, Hester Z, Klinkert I, et al. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data [J]. J Proteom, 2012, 75(16): 5106-5110. |
| [41] | Alexandrov T, Ovchnnikova K, Palmer A, et al. METASPACE: A community-populated knowledge base of spatial metabolomes in health and disease [J]. 2019: 539478. |
| [42] | Li B, Neumann EK, Ge JY, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging [J]. Plant Cell Environ, 2018, 41(11): 2693-2703. |
| [43] | Xia J, Lou GG, Zhang L, et al. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI [J]. Hortic Res, 2023, 10(7): uhad109. |
| [44] | Tong Q, Zhang C, Tu Y, et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging [J]. Talanta, 2022, 238: 123045. |
| [45] | Zhan XR, Qiu T, Zhang HS, et al. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves [J]. Plant Commun, 2023, 4(5): 100630. |
| [46] | He F, Huang YF, Dai W, et al. The localization of the alkaloids in Coptis chinensis rhizome by time-of-flight secondary ion mass spectrometry [J]. Front Plant Sci, 2022, 13: 1092643. |
| [47] | Luo SY, Yang XX, Zhang Y, et al. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging [J]. Food Chem, 2024, 435: 137504. |
| [48] | Li Q, Chen YY, Gao H, et al. In situ analysis of volatile oil in Angelica sinensis roots by fluorescence imaging combined with mass spectrometry imaging [J]. Talanta, 2023, 255: 124253. |
| [49] | Jiang DQ, Lin HB, Liu ZH, et al. Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities [J]. Mol Hortic, 2025, 5(1): 11. |
| [50] | Yue XF, Feng L, Sun CL, et al. Visualizing the spatial distribution of metabolites in Angelica sinensis roots by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Phytochem Anal, 2025. |
| [51] | Han YH, Zhao YS, Chen PP, et al. On-tissue derivatization for isomer-specific mass spectrometry imaging and relative quantification of monosaccharides in biological tissues [J]. Anal Chim Acta, 2022, 1225: 340241. |
| [52] | Sun CL, Liu W, Ma SS, et al. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge [J]. J Chromatogr A, 2020, 1614: 460704. |
| [53] | Li B, Hansen SH, Janfelt C. Direct imaging of plant metabolites in leaves and petals by desorption electrospray ionization mass spectrometry [J]. Int J Mass Spectrom, 2013, 348: 15-22. |
| [54] | Tocci N, Gaid M, Kaftan F, et al. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots [J]. New Phytol, 2018, 217(3): 1099-1112. |
| [55] | Lange BM, Fischedick JT, Lange MF, et al. Integrative approaches for the identification and localization of specialized metabolites in Tripterygium roots [J]. Plant Physiol, 2017, 173(1): 456-469. |
| [56] | Shimma S, Sagawa T. Microscopy and mass spectrometry imaging reveals the distributions of curcumin species in dried turmeric root [J]. J Agric Food Chem, 2019, 67(34): 9652-9657. |
| [57] | Li B, Ge JY, Liu W, et al. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging [J]. New Phytol, 2021, 231(2): 892-902. |
| [58] | Sun CL, Ma SS, Li LL, et al. Visualizing the distributions and spatiotemporal changes of metabolites in Panax notoginseng by MALDI mass spectrometry imaging [J]. J Ginseng Res, 2021, 45(6): 726-733. |
| [59] | Dreisbach D, Petschenka G, Spengler B, et al. 3D-surface MALDI mass spectrometry imaging for visualising plant defensive cardiac glycosides in Asclepias curassavica [J]. Anal Bioanal Chem, 2021, 413(8): 2125-2134. |
| [60] | Zhao WH, Zhang YD, Shi YP. Visualizing the spatial distribution of endogenous molecules in wolfberry fruit at different development stages by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Talanta, 2021, 234: 122687. |
| [61] | Dutkiewicz EP, Su CH, Lee HJ, et al. Visualizing Vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry [J]. Plant J, 2021, 105(4): 1123-1133. |
| [62] | Nie LX, Huang LY, Wang XP, et al. Desorption electrospray ionization mass spectrometry imaging illustrates the quality characters of isatidis Radix [J]. Front Plant Sci, 2022, 13: 897528. |
| [63] | Hao CY, Yang W, Dong GQ, et al. Visualization and identification of benzylisoquinoline alkaloids in various Nelumbo nucifera tissues [J]. Heliyon, 2023, 9(6): e16138. |
| [64] | Guo N, Fang ZY, Zang QC, et al. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species [J]. J Ethnopharmacol, 2023, 313: 116546. |
| [65] | Lorensen MDBB, Bjarnholt N, St-Pierre B, et al. Spatial localization of monoterpenoid indole alkaloids in Rauvolfia tetraphylla by high resolution mass spectrometry imaging [J]. Phytochemistry, 2023, 209: 113620. |
| [66] | Zhou PP, Zuo LH, Liu C, et al. Unraveling spatial metabolome of the aerial and underground parts of Scutellaria baicalensis by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Phytomedicine, 2024, 123: 155259. |
| [67] | Xi HT, Xu WX, He FX, et al. Spatial metabolome of biosynthesis and metabolism in Cyclocarya paliurus leaves [J]. Food Chem, 2024, 443: 138519. |
| [68] | Liu TX, Wang P, Chen YL, et al. LC-MS and MALDI-MSI-based metabolomic approaches provide insights into the spatial-temporal metabolite profiles of Tartary buckwheat achene development [J]. Food Chem, 2024, 449: 139183. |
| [69] | Wang CS, Liu YL, Wang XL, et al. Influence of sulfur fumigation on angelicae dahuricae Radix: insights from chemical profiles, MALDI-MSI and anti-inflammatory activities [J]. Molecules, 2024, 30(1): 22. |
| [70] | Guo XC, Cheng KY, Wang CX, et al. Spatial distribution of alkaloids in Fritillaria Bulbus using UPLC-Q-Exactive Orbitrap MS/MS and desorption electrospray MS imaging [J]. LWT, 2025, 218: 117544. |
| [71] | Du ZH, Zhou Y, Guo S, et al. Triterpenoid saponins in tea plants: a spatial and metabolic analysis using UPLC-QTOFMS, molecular networking, and DESI-MSI [J]. Food Chem, 2025, 475: 143323. |
| [72] | Lu X, Yang H, Liu XG, et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L [J]. Front Plant Sci, 2017, 8: 872. |
| [73] | Tang WW, Shi JJ, Liu W, et al. MALDI imaging assisted discovery of a di-O-glycosyltransferase from Platycodon grandiflorum root [J]. Angew Chem Int Ed, 2023, 62(19): e202301309. |
| [74] | Berman P, de Haro LA, Cavaco AR, et al. The biosynthetic pathway of the hallucinogen mescaline and its heterologous reconstruction [J]. Mol Plant, 2024, 17(7): 1129-1150. |
| [75] | Dong YH, Sonawane P, Cohen H, et al. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox [J]. New Phytol, 2020, 228(6): 1986-2002. |
| [76] | Alexander LE, Gilbertson JS, Xie B, et al. High spatial resolution imaging of the dynamics of cuticular lipid deposition during Arabidopsis flower development [J]. Plant Direct, 2021, 5(4): e00322. |
| [1] | 蔡如凤, 杨宇轩, 于基正, 李佳楠. 人工智能重塑蛋白质工程:从结构解析到合成生物学的算法革命[J]. 生物技术通报, 2025, 41(8): 1-10. |
| [2] | 高婧, 陈益存, 高暝, 赵耘霄, 汪阳东. 植物单宁合成调控及其对环境的响应机制[J]. 生物技术通报, 2025, 41(7): 49-59. |
| [3] | 吴娅, 姚润, 杨含婷, 刘微, 杨帅, 宋驰, 陈士林. 凤梨薄荷SDR基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(5): 175-185. |
| [4] | 鲁天怡, 李爱朋, 费强. 生物合成聚乳酸研究进展[J]. 生物技术通报, 2025, 41(4): 47-60. |
| [5] | 李晓明, 尚秀华, 王有霜, 吴志华. 植物中苯并噁嗪类化合物的研究进展[J]. 生物技术通报, 2025, 41(4): 9-20. |
| [6] | 刘璐, 朱哲远, 李颖曦, 王颉, 彭迪. 微生物除草剂的研究进展[J]. 生物技术通报, 2024, 40(9): 161-171. |
| [7] | 聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117. |
| [8] | 马小翔, 马泽源, 刘亚月, 周龙建, 和羿帆, 张翼. 仿突变生物合成调控对土曲霉C23-3次生代谢产物的影响[J]. 生物技术通报, 2024, 40(8): 275-287. |
| [9] | 沈真辉, 曹瑶, 杨林雷, 罗祥英, 子灵山, 陆青青, 李荣春. 金耳和毛韧革菌麦角硫因生物合成基因的克隆及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 259-272. |
| [10] | 何玙冰, 付振浩, 李仁瀚, 刘秀霞, 刘春立, 杨艳坤, 李业, 白仲虎. 利用代谢工程在酿酒酵母中高效合成2-萘乙醇[J]. 生物技术通报, 2024, 40(7): 99-107. |
| [11] | 胡锦锦, 李素贞, 马旭辉, 柳小庆, 谢珊珊, 江海洋, 陈茹梅. 玉米花青素生物合成代谢调控[J]. 生物技术通报, 2024, 40(6): 34-44. |
| [12] | 张美玉, 赵玉斌, 王灵云, 宋元达, 赵新河, 任晓洁. 微藻破囊壶菌产功能性脂肪酸DHA研究进展[J]. 生物技术通报, 2024, 40(6): 81-94. |
| [13] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
| [14] | 苑海鹏, 叶云舒, 司皓, 纪秋研, 张玉红. 丛枝菌根真菌对植物逆境胁迫抗性及次生代谢产物合成的影响[J]. 生物技术通报, 2024, 40(6): 45-56. |
| [15] | 雷棋怡, 徐杨, 李鹏飞. 脆弱拟杆菌六型分泌系统对肠道屏障的影响及机制[J]. 生物技术通报, 2024, 40(3): 286-295. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||