生物技术通报 ›› 2026, Vol. 42 ›› Issue (5): 1-13.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0999
• 微生物组学专题 •
彭善麟1(
), 廖卓诚1, 王涛1, 刘志宇1, 刘海忆1, 王婷婷2, 杨琴1, 王哲1(
), 邰欢欢1(
)
收稿日期:2025-09-22
出版日期:2026-02-09
发布日期:2026-02-09
通讯作者:
王哲,男,博士,副教授,研究方向 :玉米抗逆分子机制解析;E-mail: wangzhe8636@163.com作者简介:彭善麟,女,硕士研究生,研究方向 :微生物与植物互作;E-mail: 321660281@qq.com
基金资助:
PENG Shan-lin1(
), LIAO Zhuo-cheng1, WANG Tao1, LIU Zhi-yu1, LIU Hai-yi1, WANG Ting-ting2, YANG Qin1, WANG Zhe1(
), TAI Huan-huan1(
)
Received:2025-09-22
Published:2026-02-09
Online:2026-02-09
摘要:
目的 比较分析玉米茎腐病不同抗性品种根际微生物群落结构、互作网络及功能差异,揭示其与玉米茎腐病抗性的关联。 方法 通过田间接种优势致病菌禾谷镰孢(Fusarium graminearum),从90份玉米品种中筛选出抗茎腐病品种JK580、K2322和感病品种DK2207。进一步利用16S rRNA和ITS高通量测序技术,比较分析了病原菌胁迫下不同抗性品种根际微生物群落的多样性、组分、网络特征及功能特征。 结果 病原菌胁迫下,抗病品种根际微生物α多样性(Shannon、Pielou指数)显著高于感病品种。β多样性分析显示,抗病品种的根际细菌和真菌群落结构更加相似,且与感病品种差异显著。组分分析与差异菌群分析表明,抗病品种根际微生物群落组成更丰富多样,富集更多有益微生物菌群,如黄单胞菌科(Xanthomonadaceae)、微颤菌科(Microscillaceae)、草酸杆菌科(Oxalobacteraceae)以及真菌的枝孢科(Cladosporiaceae)等;而感病品种DK2207群落结构较单一,主要富集了假单胞菌科(Pseudomonadaceae)。共现网络分析显示,抗病品种构建的根际微生物共现网络鲁棒性更高,脆弱性指数更低,结构更稳定。功能分析表明,两个抗病品种的根际细菌维持着高效的能量获取功能,而感病品种则表现出较高的碳氮代谢特征,且富集了更多病理营养型(pathotroph)真菌。 结论 在病原菌胁迫下,玉米茎腐病抗感品种根际微生物群落结构与功能存在显著差异,较高的微生物群落多样性、更丰富多样的有益类群以及稳定的群落网络可能是玉米提高茎腐病抗性的重要生态机制。
彭善麟, 廖卓诚, 王涛, 刘志宇, 刘海忆, 王婷婷, 杨琴, 王哲, 邰欢欢. 玉米茎腐病不同抗性品种根际微生物群落多样性及功能差异[J]. 生物技术通报, 2026, 42(5): 1-13.
PENG Shan-lin, LIAO Zhuo-cheng, WANG Tao, LIU Zhi-yu, LIU Hai-yi, WANG Ting-ting, YANG Qin, WANG Zhe, TAI Huan-huan. Diversity and Functional Differences of Rhizosphere Microbial Communities in Maize Varieties with Different Resistance to Stalk Rot[J]. Biotechnology Bulletin, 2026, 42(5): 1-13.
图1 玉米茎腐病不同抗性品种根际细菌(A, B)和真菌(C, D)的Shannon指数和Pielou指数*P<0.05,**P<0.01,***P<0.001,****P<0.000 1,ns代表无显著影响;JK580、K2322是玉米茎腐病抗病品种,DK2207是玉米茎腐病感病品种,下同
Fig. 1 Shannon indexes and Pielou indexes of rhizosphere bacterial (A, B) and fungal (C, D) communities of varieties with different resistance to maize stalk rot*P<0.05, **P<0.01; ***P<0.001, ****P<0.000 1. The ns refers to the non-significant effect (P>0.05); JK580、K2322 are maize varieties resistant to maize stalk rot, DK2207 is maize variety susceptible to maize stalk rot, The same as below
图2 玉米茎腐病不同抗性品种根际细菌(A)和真菌(B)群落的PCoA分析
Fig. 2 Principal coordinate analysis of rhizosphere bacterial (A) and fungal (B) community (PCoA) of varieties with different resistance to maize stalk rot
图3 玉米茎腐病不同抗性品种根际细菌(A, B)和真菌(C, D)在门和科水平的结构组成
Fig. 3 Composition of rhizosphere bacterial (A, B) and fungal (C, D) communities at phylum and family levels of varieties with different resistance to maize stalk rot
图4 玉米茎腐病不同抗性品种根际微生物标志物的LEfSe分析A-B:抗病品种K2322与感病品种DK2207根际细菌(A)和真菌(B)核心标志物的系统发育树;C-D:抗病品种JK580与感病品种DK2207根际细菌(C)和真菌(D)核心标志物的系统发育树
Fig. 4 LEfSe analysis of rhizosphere microbial biomarkers in maize varieties with different resistance to stalk rotA-B: The phylogenetic trees of the core biomarkers of bacterial (A) and fungal (B) biomarkers in rhizosphere microbial of the resistant variety K2322 and the susceptible variety DK2207 to maize stalk rot. C-D: The phylogenetic trees of the core biomarkers of bacterial (C) and fungal (D) biomarkers in rhizosphere microbial of the resistant variety JK580 and the susceptible variety DK2207 to maize stalk rot
图 5 玉米茎腐病不同抗性品种根际细菌和真菌共现网络A-C:感病品种DK2207(A)、抗病品种JK580(B)以及K2322(C)根际细菌和真菌共现网络;D:抗感品种共现网络节点随机消亡分析;E:抗感品种共现网络节点定向消亡分析;F:抗感品种共现网络脆弱性分析;每个网络的节点根据门水平分类着色,并根据连接程度确定节点大小;连接节点的蓝色连线代表正相关,红色连线代表负相关
Fig. 5 Bacterial and fungal co-occurrence network in rhizosphere microbial of varieties with different resistance to maize stalk rotA-C: Bacterial and fungal co-occurrence in rhizosphere of the susceptible variety DK2207 (A), and the resistant varieties JK580 (B), K2322 (C). D: Analysis of random removing of network nodes of the resistant and the susceptible varieties co-occurrence. E: Analysis of targeted removing of network nodes of the resistant and the susceptible varieties co-occurrence. F: Co-occurrence network vulnerability analysis of the resistant and the susceptible varieties. The nodes of each network are colored according to gate level classification, and the node size is determined according to the degree of connection. The edges in blue and red indicate co-occurrence and mutual exclusion patterns among taxa, respectively.
图6 玉米茎腐病不同抗性品种根际细菌FAPROTAX功能(A)和真菌FUNGuild 功能(B)的预测分析图中不同小写字母表示各组间差异显著(P<0.05)
Fig. 6 Predictive functional analysis of rhizosphere (A) bacterial (FAPROTAX) and (B) fungal (FUNGuild) communities in maize varieties with different resistance to stalk rotDifferent lowercase letters in the figure indicate significant difference between different groups (P<0.05)
| [1] | 曾智勇. 我国玉米生产现状分析及建议 [J]. 粮油与饲料科技, 2022(3): 4-8. |
| Zeng ZY. Analysis of the current situation of maize production in China and suggestions [J]. Grain Oil Feed Technol, 2022(3): 4-8. | |
| [2] | 范志业, 崔小伟, 施艳, 等. 河南省玉米茎基腐病主要病原菌鉴定及主栽玉米品种的抗性分析 [J]. 河南农业科学, 2014, 43(12): 87-90. |
| Fan ZY, Cui XW, Shi Y, et al. Identification of pathogens causing corn stalk rot and resistance test of main cultivars in Henan Province [J]. J Henan Agric Sci, 2014, 43(12): 87-90. | |
| [3] | 马传禹, 姚丽姗, 杜腓利, 等. 玉米抗茎腐病研究进展 [J]. 玉米科学, 2018, 26(2): 131-137. |
| Ma CY, Yao LS, Du FL, et al. Advanced resistance and genetic research for maize stalk rot [J]. J Maize Sci, 2018, 26(2): 131-137. | |
| [4] | 刘春来. 中国玉米茎腐病研究进展 [J]. 中国农学通报, 2017, 33(30): 130-134. |
| Liu CL. Research process of maize stem rot in China [J]. Chin Agric Sci Bull, 2017, 33(30): 130-134. | |
| [5] | Khokhar MK, Hooda KS, Sharma SS, et al. Post flowering stalk rot complex of maize - present status and future prospects [J]. Maydica, 2014, 59(3): 226-242. |
| [6] | 段灿星, 曹言勇, 董怀玉, 等. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定 [J]. 中国农业科学, 2022, 55(2): 265-279. |
| Duan CX, Cao YY, Dong HY, et al. Precise characterization of maize germplasm for resistance to Pythium stalk rot and Gibberella stalk rot [J]. Sci Agric Sin, 2022, 55(2): 265-279. | |
| [7] | 马海林, 刘峰, 崔贵梅, 等. 不同种衣剂配方防治玉米茎腐病效果试验 [J]. 陕西农业科学, 2020, 66(7): 28-31, 57. |
| Ma HL, Liu F, Cui GM, et al. Experiment on effect of different seed coating formulas on control of maize stem rot [J]. Shaanxi J Agric Sci, 2020, 66(7): 28-31, 57. | |
| [8] | 李想, 王欢欢, 郭秋翠, 等. 玉米茎腐病病原禾谷镰孢拮抗菌筛选及分子鉴定 [J]. 玉米科学, 2020, 28(5): 169-175. |
| Li X, Wang HH, Guo QC, et al. Isolation and molecular identification of antagonistic bacteria against the pathogen Fusarium graminearum causing corn stalk rot [J]. J Maize Sci, 2020, 28(5): 169-175. | |
| [9] | 韦中, 沈宗专, 杨天杰, 等. 从抑病土壤到根际免疫: 概念提出与发展思考 [J]. 土壤学报, 2021, 58(4): 814-824. |
| Wei Z, Shen ZZ, Yang TJ, et al. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control [J]. Acta Pedol Sin, 2021, 58(4): 814-824. | |
| [10] | Berendsen RL, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium [J]. ISME J, 2018, 12(6): 1496-1507. |
| [11] | Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 2013, 11(11): 789-799. |
| [12] | 李金鞠, 廖甜甜, 潘虹, 等. 土壤有益微生物在植物病害防治中的应用 [J]. 湖北农业科学, 2011, 50(23): 4753-4757. |
| Li JJ, Liao TT, Pan H, et al. Application of beneficial soil microorganisms in biological control of crop diseases [J]. Hubei Agric Sci, 2011, 50(23): 4753-4757. | |
| [13] | 荀卫兵, 张瑞福, 沈其荣. 根际微生物组功能补偿装配的概念、内涵和展望 [J]. 土壤学报, 2024, 61(6): 1481-1491. |
| Xun WB, Zhang RF, Shen QR. Functional compensatory assembly of rhizosphere microbiome: concept, content, and outlook [J]. Acta Pedol Sin, 2024, 61(6): 1481-1491. | |
| [14] | Yang KM, Fu RX, Feng HC, et al. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota [J]. Mol Plant, 2023, 16(9): 1379-1395. |
| [15] | Mendes LW, Mendes R, Raaijmakers JM, et al. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean [J]. ISME J, 2018, 12(12): 3038-3042. |
| [16] | 高小宁, 刘睿, 吴自林, 等. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析 [J]. 生物技术通报, 2022, 38(6): 166-173. |
| Gao XN, Liu R, Wu ZL, et al. Characteristics of endophytic fungal and bacterial community in the stalks of sugarcane cultivars resistant to ratoon stunting disease [J]. Biotechnol Bull, 2022, 38(6): 166-173. | |
| [17] | Jin X, Jia HT, Ran LY, et al. Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates [J]. Nat Commun, 2024, 15: 5125. |
| [18] | Ping XX, Khan RAA, Chen SM, et al. Deciphering the role of rhizosphere microbiota in modulating disease resistance in cabbage varieties [J]. Microbiome, 2024, 12(1): 160. |
| [19] | Yin JK, Zhang ZL, Zhu CC, et al. Heritability of tomato rhizobacteria resistant to Ralstonia solanacearum [J]. Microbiome, 2022, 10(1): 227. |
| [20] | Ge AH, Liang ZH, Xiao JL, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control [J]. Agric Ecosyst Environ, 2021, 312: 107336. |
| [21] | 李红, 晋齐鸣, 张伟, 等. 玉米品种抗茎腐病鉴定 [J]. 东北农业科学, 2017, 42(2): 32-33. |
| Li H, Jin QM, Zhang W, et al. Identification of resistance to stalk rot of maize varieties [J]. J Northeast Agric Sci, 2017, 42(2): 32-33. | |
| [22] | Xia XY, Wei QH, Wu HX, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot [J]. Microbiome, 2024, 12(1): 156. |
| [23] | Epelde L, Becerril JM, Hernández-Allica J, et al. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction [J]. Appl Soil Ecol, 2008, 39(3): 299-310. |
| [24] | Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data [J]. Nat Meth, 2016, 13(7): 581-583. |
| [25] | Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB [J]. Nucleic Acids Res, 2007, 35(21): 7188-7196. |
| [26] | Kõljalg U, Larsson KH, Abarenkov K, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi [J]. New Phytol, 2005, 166(3): 1063-1068. |
| [27] | Lyu FY, Han FR, Ge CL, et al. OmicStudio: a composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication [J]. iMeta, 2023, 2(1): e85. |
| [28] | Nguyen NH, Song ZW, Bates ST, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 2016, 20: 241-248. |
| [29] | Gao YY, Zhang GX, Jiang SY, et al. Wekemo Bioincloud: a user-friendly platform for meta-omics data analyses [J]. iMeta, 2024, 3(1): e175. |
| [30] | Yue H, Sun XM, Wang TT, et al. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat [J]. Microbiome, 2024, 12(1): 44. |
| [31] | Dlamini SP, Akanmu AO, Babalola OO. Rhizospheric microorganisms: The gateway to a sustainable plant health [J]. Front Sustain Food Syst, 2022, 6: 925802. |
| [32] | 石博, 谢媛媛, 关峰, 等. 苦瓜枯萎病抗病与感病品种根际土壤的微生物数量消长动态分析 [J]. 中国农学通报, 2024, 40(22): 118-124. |
| Shi B, Xie YY, Guan F, et al. Analysis on population fluctuation of rhizosphere microorganism of resistant and susceptible bitter gourd [J]. Chin Agric Sci Bull, 2024, 40(22): 118-124. | |
| [33] | Wei Z, Yang TJ, Friman VP, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health [J]. Nat Commun, 2015, 6: 8413. |
| [34] | Venturi V, Keel C. Signaling in the rhizosphere [J]. Trends Plant Sci, 2016, 21(3): 187-198. |
| [35] | Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J]. Proc Natl Acad Sci U S A, 2011, 108(supplement_1): 4516-4522. |
| [36] | Feng ZW, Liang QH, Yao Q, et al. The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions [J]. Environ Microbiome, 2024, 19(1): 91. |
| [37] | 姜淑祯, 冯小虎, 宋文静, 等. 不同青枯病抗性烤烟品种(系)根际土壤微生物群落分析 [J]. 烟草科技, 2025, 58(4): 34-44. |
| Jiang SZ, Feng XH, Song WJ, et al. Analysis of microbial communities in rhizosphere soil for flue-cured tobacco varieties(lines) with different resistance to bacterial wilt [J]. Tob Sci Technol, 2025, 58(4): 34-44. | |
| [38] | Shao MW, Chen HJ, Huang AQ, et al. Modulation of rhizosphere microbiota by Bacillus subtilis R31 enhances long-term suppression of banana Fusarium wilt [J]. iMetaOmics, 2025, 2(2): e70006. |
| [39] | Deng XH, Zhang N, Li YC, et al. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities [J]. New Phytol, 2022, 235(4): 1558-1574. |
| [40] | Wang DN, He XM, Baer M, et al. Lateral root enriched Massilia associated with plant flowering in maize [J]. Microbiome, 2024, 12(1): 124. |
| [41] | Yu P, He XM, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation [J]. Nat Plants, 2021, 7(4): 481-499. |
| [42] | Wang XN, Radwan MM, Taráwneh AH, et al. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides [J]. J Agric Food Chem, 2013, 61(19): 4551-4555. |
| [43] | Fan XY, Ge AH, Qi SS, et al. Root exudates and microbial metabolites: signals and nutrients in plant-microbe interactions [J]. Sci China Life Sci, 2025, 68(8): 2290-2302. |
| [44] | He DX, Singh SK, Peng L, et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance [J]. ISME J, 2022, 16(11): 2622-2632. |
| [45] | Thimmaraju Rudrappa KJC. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiol, 2008, 148(3): 1547-1556. |
| [46] | Li PF, Liu J, Saleem M, et al. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems [J]. Microbiome, 2022, 10(1): 108. |
| [47] | Wang CQ, Kuzyakov Y. Mechanisms and implications of bacterial-fungal competition for soil resources [J]. ISME J, 2024, 18(1): wrae073. |
| [48] | 程玉静, 陈国清, 薛林, 等. 玉米茎腐病研究进展 [J]. 安徽农业科学, 2013, 41(20): 8557-8559. |
| Cheng YJ, Chen GQ, Xue L, et al. Research advance of maize stalk rot [J]. J Anhui Agric Sci, 2013,41(20): 8557-8559. | |
| [49] | 赵同谦, 张凯, 郑华, 等. 外来植物对陆地生态系统氮循环的影响途径 [J]. 生态科学, 2011, 30(2): 207-212. |
| Zhao TQ, Zhang K, Zheng H, et al. Pathways of exotic plant impacts on nitrogen cycling in terrestrial ecosystem [J]. Ecol Sci, 2011, 30(2): 207-212. | |
| [50] | Wang SC, Zhang XY, Zhang ZC, et al. Fusarium-produced vitamin B6 promotes the evasion of soybean resistance by Phytophthora sojae [J]. J Integr Plant Biol, 2023, 65(9): 2204-2217. |
| [51] | Thébault E, Fontaine C. Stability of ecological communities and the architecture of mutualistic and trophic networks [J]. Science, 2010, 329(5993): 853-856. |
| [52] | Rohr RP, Saavedra S, Bascompte J. On the structural stability of mutualistic systems [J]. Science, 2014, 345(6195): 1253497. |
| [53] | Wu CF, Liu HW, Lai LY, et al. Host genotype-specific plant microbiome correlates with wheat disease resistance [J]. Biol Fertil Soils, 2025, 61(2): 277-291. |
| [54] | Fang TY, Han XY, Yue YL. Disease-resistant varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) inhibit Plasmodiophora brassicae infestation by stabilising root flora structure [J]. Front Plant Sci, 2024, 15: 1328845. |
| [55] | Qiao YZ, Wang TT, Huang QW, et al. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence [J]. Soil Biol Biochem, 2024, 188: 109231. |
| [1] | 周迪, 王东旭, 格桑曲珍, 欧美香, 郭小芳, 德吉. 西藏巴松措真菌多样性、群落结构和生态功能预测[J]. 生物技术通报, 2025, 41(1): 298-311. |
| [2] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
| [3] | 马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. |
| [4] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
| [5] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
| [6] | 杜洁, 黄选怡, 张岩, 姜晴春, 余知和, 王允, 柳忠玉. 虎杖根系细菌群落组成及其与有效成分含量相关性研究[J]. 生物技术通报, 2024, 40(12): 208-217. |
| [7] | 陈楚雯, 李洁, 赵瑞鹏, 刘媛, 吴锦波, 李志雄. 藏鸡GPX3基因的克隆、组织表达谱研究及功能预测[J]. 生物技术通报, 2023, 39(3): 311-320. |
| [8] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
| [9] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
| [10] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
| [11] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
| [12] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
| [13] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
| [14] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
| [15] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||