[1] Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases[J]. Nat Rev Drug Discov, 2013, 12:447-464. [2] Ewald B, Sampath D, Plunkett W. Nucleoside analogs:molecular mechanisms signaling cell death[J]. Oncogene, 2008, 27:6522-6537. [3] Merino P. Chemical synthesis of nucleoside analogues[M]. New Jersey:John Wiley & Sons, Inc. , 2013. [4] Ghaly AE, Dave D, Brooks MS, et al. Production of biodiesel by enzymatic transesterification:review[J]. Am J Biochem Biotechnol, 2010, 6:103-110. [5] Pepper LR, Cho YK. A decade of yeast surface display technology:Where are we now?[J]Comb Chem High Throughput Screen, 2008, 11(2):127-134. [6] Abe H, Shimma Y, Jigami Y. In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir[J]. Glycobiology, 2003, 13:87-95. [7] Washida M, Takahashi S, Ueda M, et al. Spacer-mediated display of active lipase on the yeast cell surface[J]. Appl Microbiol Biotechnol, 2001, 56:681-686. [8] Friedkin M, Roberts D. The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue[J]. J Biol Chem, 1954, 207:245-256. [9] Akiyama S, Furukawa T, Sumizawa T, et al. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression[J]. Cancer Sci, 2004, 95(11):851-857. [10] Su GD, Huang DF, Han SY, et al. Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis[J]. Appl Microbiol Biotechnol, 2010, 86(5):1493-1501. [11] Chen X, Zaro JL, Shen WC. Fusion protein linkers:property, design and functionality[J]. Adv Drug Deliv Rev, 2013, 65(10):1357-1369. [12] 韩双艳, 韩振林, 林影, 等. 高效絮凝素毕赤酵母表面展示系统的构建[J]. 生物化学与生物物理进展, 2010, 37(2):200-207. [13] 张溪, 韩双艳, 苏国栋, 等. 外源脂肪酶在毕氏酵母表面展示及发酵过程分析[J]. 现代食品科技, 2010, 26(1):9-13. [14] Xiong SL, Wang YB, Wang X, et al. Enzymatic synthesis of 2’-deoxyuridine by whole cell catalyst co-expressing uridine phosphorylase and thymidine phosphorylase through auto-induction system[J]. J Biosci Bioeng, 2014, 118(6):723-727. [15] Lanza AM, KA Curran, LG Rey, et al. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae[J]. BMC Syst Biol, 2014, 8:33-43. [16] Matsumoto T, Fukuda H, Ueda M, et al. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain[J]. Appl Environ Microbiol, 2002, 68(9):4517-4522. [17] Razzell WE, Casshyap P. Substrate specificity and induction of thymidine phosphorylase in Escherichia coli[J]. J Biol Chem, 1964, 239(6):1789-1793. [18] Serra I, Serra CD, Rocchietti S, et al. Stabilization of thymidine phosphorylase from Escherichia coli by immobilization and post immobilization techniques[J]. Enzyme Microb Technol, 2011, 49(1):52-58. [19] Xiong J, Zhang W, Su J, et al. Improved synthesis of 20-deoxyaden-osine and 5-methyluridine by Escherichia coli using an auto-induction system[J]. World J Microbiol Biotechnol, 2012, 28:721-727. |