[1] Bao C, Conde J, Curtin J, et al. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis[J]. Scientific Reports, 2015, 5:12297. [2] Han H, Valdeperez D, Qiao J, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy[J]. Acs Nano, 2017, 11(2):1281-1291. [3] Yang L, Fang Y, Yuan C, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics[J]. Acs Nano, 2017, 11(2):1509 -1519. [4] Zhang Y, Leonard M, et al. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles[J]. Acs Nano, 2016, 11(1):335-346. [5] Goesmann H, Feldmann C. ChemInform abstract:nanoparticulate functional materials[J]. Cheminform, 2010, 41:1362-1395. [6] 张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000(3):42-48. [7] Wang CC, Wu SM, et al. Biomedical applications of DNA-conjugated gold nanoparticles[J]. Chembiochem, 2016, 17:1052-1062. [8] Kim D, Yong YJ, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer[J]. Acs Nano, 2010, 4(7):3689-3696. [9] Chen D, Li B, Cai S, et al. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy[J]. Biomaterials, 2016, 100:1-16. [10] Miao X, Li Z, Zhu A, et al. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification[J]. Biosensors & Bioelectronics, 2016, 83:39-44. [11] Arnida, Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells:a comparative study of rods and spheres[J]. J Appl Toxicol, 2010, 30(3):212-217. [12] Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells[J]. Small, 2008, 4(1):153-159. [13] Alkilany AM, Nagaria PK, Hexel CR, et al. Cellular uptake and cytotoxicity of gold nanorods:molecular origin of cytotoxicity and surface effects[J]. Small, 2009, 5(6):701-708. [14] Qiu Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods[J]. Biomaterials, 2010, 31:7606-7619. [15] Wang L, Jiang X, Ji Y, et al. Surface chemistry of gold nanorods:origin of cell membrane damage and cytotoxicity[J]. Nanoscale, 2013, 5(18):8384-8391. [16] Yasun E, Li C, Barut I, et al. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods[J]. Nanoscale, 2015, 7(22):10240-10248. [17] Huang YF, Sefah K, Bamrungsap S, et al. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods[J]. Langmuir, 2008, 24(20):11860-11865. [18] Shi H, et al. Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy[J]. Nanoscale, 2014, 6(15):8754-8761. [19] Qiu L, Chen T, Öçsoy I, et al. A cell-targeted, size-photocontrolla-ble, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy[J]. Nano Letters, 2015, 15(1):457-463. [20] 陈功, 殷珺. 磁性纳米材料在生物医学领域的应用[J]. 中国医学装备, 2006, 3(8):30-32. [21] Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode[J]. Bioelectrochemistry, 2017, 114:24-32. [22] Bamrungsap S, Chen T, Shukoor MI, et al. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles[J]. Acs Nano, 2012, 6(5):3974-3981. [23] Sun D, Lu J, Zhong Y, et al. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification[J]. Biosens Bioelectron, 2016, 75:301-307. [24] Zhu H, et al. Aptamer-PEG-modified Fe 3 O 4 @Mn as a novel T1- and T2- dual-model MRI contrast agent targeting hypoxia-induced cancer stem cells[J]. Sci Rep, 2016, 6:39245. [25] Wei Z, Wu Y, Zhao Y, et al. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging[J]. Analytica Chimica Acta, 2016, 938:156-164. [26] Li J, Wang S, Wu C, et al. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle[J]. Biosens Bioelectron, 2016, 86:1047-1053. [27] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. [28] 张金超, 杨康宁, 张海松, 等. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 25(2):397-408. [29] Kwon T, Park J, Lee G, et al. Carbon nanotube-patterned surface-based recognition of carcinoembryonic antigens in tumor cells for cancer diagnosis[J]. J Phys Chemi Lett, 2013, 4(7):1126. [30] Taghavi S, et al. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells[J]. Colloids & Surfaces B Biointerfaces, 2015, 140(3):28-39. [31] Mohammadi M, Salmasi Z, Hashemi M, et al. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells[J]. Int J Pharm, 2015, 485(1-2):50-60. [32] Tabrizi MA, Shamsipur M. A high sensitive electrochemical aptase-nsor for the determination of VEGF165 in serum of lung cancer patient[J]. Biosens Bioelectron, 2015, 74(12):764-769. [33] Kim MG, Shon Y, Lee J, et al. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector[J]. Biomaterials, 2014, 35(9):2999-3004. [34] 袁丽, 王蓓娣, 等. 介孔二氧化硅纳米粒子应用于可控药物传输系统的若干新进展[J]. 有机化学, 2010(5):640-647. [35] Xie X, Li F, Zhang H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery[J]. Eur J Pharm Sci, 2016, 83:28-35. [36] Tang Y, Hu H, Zhang MG, et al. An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles[J]. Nanoscale, 2015, 7(14):6304-6310. [37] Lam PL, Wong WY, et al. Recent advances in green nanoparticulate systems for drug delivery:efficient delivery and safety concern[J]. Nanomedicine(Lond), 2017, 12:357-385. [38] Chompoosor A, et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles[J]. Small, 2010, 6(20):2246-2249. [39] Han JW, Jeong JK, Gurunathan S, et al. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse[J]. Nanotoxicology, 2016, 10(3):361-373. [40] Stoccoro A, et al. Multiple endpoints to evaluate pristine and reme-diated titanium dioxide nanoparticles genotoxicity in lung epithelial A549 cells[J], Toxicol Lett, 2017, 276:48-61. [41] Annangi B, Bach J, et al. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage[J]. Nanotoxicology, 2015, 9(2):138-1347. [42] Dam DH, et al. Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars[J]. Nanomedicine, 2015, 11:671-679. [43] Gonzalez L, et al. Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the in vitro genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes[J]. Nanotoxicology, 2014, 8:876-884. [44] Gao N, Bozeman EN, Qian W, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery[J]. Theranostics, 2017, 7(6):1689-1704. [45] Štefančíková L, et al. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells[J]. J Nanobiotechnology, 2016, 14:63. |