生物技术通报 ›› 2019, Vol. 35 ›› Issue (6): 178-186.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1082
龙文林, 郭辉, 盛杰, 宋如晦, 徐瑶
收稿日期:
2018-12-21
出版日期:
2019-06-26
发布日期:
2019-07-08
作者简介:
龙文林,男,硕士研究生,研究方向:肿瘤的表观遗传学调控机制;E-mail:long3105@163.com
基金资助:
LONG Wen-lin, GUO Hui, SHENG Jie, SONG Ru-hui, XU Yao
Received:
2018-12-21
Published:
2019-06-26
Online:
2019-07-08
摘要: m6A 甲基化是于1974年首次被发现的一种RNA分子上的甲基化修饰,近年来已成为生命科学领域的研究热点。m6A修饰在哺乳动物细胞中是动态可逆的,是类似于DNA和组蛋白修饰的另一种表观遗传调控。这种RNA化学标记是由m6A“Writers”的蛋白质产生,可以被m6A“Erasers”(即去甲基酶)逆转。此外,“Readers”可以识别含m6A的mRNA,并相应地调节下游基因的表达。m6A RNA甲基化参与了RNA生命周期的各个阶段,从RNA加工、核输出、翻译调控到RNA降解,表明m6A具有影响RNA代谢相关多方面的功能。最近的研究表明,在不同的组织、细胞系和时空模型中,m6A的修饰是一个复杂的调控网络,m6A甲基化与肿瘤的发生和发展密切相关。主要围绕m6A的分子调控机制、生理意义及其在几种人类肿瘤中的研究进展进行综述,旨在为癌症的早期临床诊断和靶向治疗提供新的思路。
龙文林, 郭辉, 盛杰, 宋如晦, 徐瑶. m6A RNA甲基化在肿瘤发生发展中的作用[J]. 生物技术通报, 2019, 35(6): 178-186.
LONG Wen-lin, GUO Hui, SHENG Jie, SONG Ru-hui, XU Yao. Role of m6A RNA Methylation in Tumorigenesis and Development[J]. Biotechnology Bulletin, 2019, 35(6): 178-186.
[1] Dubin DT, Taylor RH.The methylation state of poly A-containing messenger RNA from cultured hamster cells[J]. Nucleic Acids Res, 1975, 2:1653-1668. [2] Boccaletto P, Machnicka MA, Purta E, et al.MODOMICS:a database of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46:D303-d307. [3] Desrosiers R, Friderici K, Rottman F.Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad USA, 1974, 71:3971-3975. [4] Wei CM, Gershowitz A, Moss B.Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA[J]. Cell, 1975, 4:379-386. [5] Krug RM, Morgan MA, Shatkin AJ.Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures[J]. J Virol, 1976, 20:45-53. [6] Sommer S, Salditt-Georgieff M, Bachenheimer S, et al.The methylation of adenovirus-specific nuclear and cytoplasmic RNA[J]. Nucleic Acids Res, 1976, 3:749-765. [7] Kennedy TD, Lane BG.Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5’-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos[J]. Can J Biochem, 1979, 57:927-931. [8] Deng X, Chen K, Luo GZ, et al.Widespread occurrence of N6-methyladenosine in bacterial mRNA[J]. Nucleic Acids Res, 2015, 43:6557-6567. [9] Narayan P, Rottman FM.An in vitro system for accurate methylation of internal adenosine residues in messenger RNA[J]. Science, 1988, 242:1159-1162. [10] Narayan P, Ludwiczak RL, Goodwin EC, et al.Context effects on N6-adenosine methylation sites in prolactin mRNA[J]. Nucleic Acids Res, 1994, 22:419-426. [11] Csepany T, Lin A, Baldick CJ, Jr. , et al. Sequence specificity of mRNA N6-adenosine methyltransferase[J]. J Biol Chem, 1990, 265:20117-20122. [12] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485:201-206. [13] Meyer KD, Saletore Y, Zumbo P, et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012, 149:1635-1646. [14] Bodi Z, Bottley A, Archer N, et al.Yeast m6A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment[J]. PLoS One, 2015, 10:e0132090. [15] Stoltzfus CM, Dane RW.Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts[J]. J Virol, 1982, 42:918-931. [16] Carroll SM, Narayan P, Rottman FM.N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA[J]. Mol Cell Biol, 1990, 10:4456-4465. [17] Jia G, Fu Y, Zhao X, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7:885-887. [18] Bokar JA, Shambaugh ME, Polayes D, et al.Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase[J]. RNA, 1997, 3:1233-1247. [19] Liu J, Yue Y, Han D, et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10:93-95. [20] Ping XL, Sun BF, Wang L, et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24:177-189. [21] Liu ZX, Li LM, Sun HL, et al.Link Between m6A Modification and Cancers[J]. Front Bioeng Biotechnol, 2018, 6:89. [22] Yue Y, Liu J, Cui X, et al.VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018, 4:10. [23] Wen J, Lv R, Ma H, et al.Zc3h13 regulates nuclear RNA m6 a methylation and mouse embryonic stem cell self-renewal[J]. Mol Cell, 2018, 69:1028-1038. [24] Warda AS, Kretschmer J, Hackert P, et al.Human METTL16 is a N6-methyladenosine(m6A)methyltransferase that targets pre-mRNAs and various non-coding RNAs[J]. EMBO Rep, 2017, 18:2004-2014. [25] Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention[J]. Cell, 2017, 169:824-835. e814. [26] Fedeles BI, Singh V, Delaney JC, et al.The AlkB Family of Fe(II)/alpha-Ketoglutarate-dependent Dioxygenases:Repairing Nucleic Acid Alkylation Damage and Beyond[J]. J Biol Chem, 2015, 290:20734-20742. [27] Zheng G, Dahl JA, Niu Y, et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49:18-29. [28] Wang X, Lu Z, Gomez A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505:117-120. [29] Hsu PJ, Zhu Y, Ma H, et al.Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27:1115-1127. [30] Alarcon CR, Goodarzi H, Lee H, et al.HNRNPA2B1 is a mediator of m6 a-dependent nuclear RNA processing events[J]. Cell, 2015, 162:1299-1308. [31] Liu N, Dai Q, Zheng G, et al.N6 -methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518:560-564. [32] Huang H, Weng H, Sun W, et al.Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20:285-295. [33] Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock[J]. Cell, 2013, 155:793-806. [34] Lin Z, Hsu PJ, Xing X, et al.Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis[J]. Cell Res, 2017, 27:1216-1230. [35] Mendel M, Chen KM, Homolka D, et al.Methylation of structured RNA by the m6 a writer METTL16 is essential for mouse embryonic development[J]. Mol Cell, 2018, 71:986-1000. [36] Aguilo F, Zhang F, Sancho A, et al.Coordination of m6 a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J]. Cell Stem Cell, 2015, 17:689-704. [37] Haussmann IU, Bodi Z, Sanchez-Moran E, et al.m6 a potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination[J]. Nature, 2016, 540:301-304. [38] Li HB, Tong J, Zhu S, et al.m6 A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548:338-342. [39] Zhou J, Wan J, Gao X, et al.Dynamic m6 A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526:591-594. [40] Mathiyalagan P, Adamiak M, Mayourian J, et al.FTO-dependent m6 a regulates cardiac function during remodeling and repair[J]. Circulation, 2019, 139(4):518-532. [41] Ben-Haim MS, Moshitch-Moshkovitz S, Rechavi G.FTO:linking m6A demethylation to adipogenesis[J]. Cell Res, 2015, 25:3-4. [42] Shen F, Huang W, Huang JT, et al.Decreased N6 -methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5[J]. J Clin Endocrinol Metab, 2015, 100:E148-154. [43] Angelova MT, Dimitrova DG, Dinges N, et al.The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders[J]. Front Bioeng Biotechnol, 2018, 6:46. [44] Ghosh D, Nandi S, Bhattacharjee S.Combination therapy to checkmate Glioblastoma:clinical challenges and advances[J]. Clin Transl Med, 2018, 7:33. [45] Cui Q, Shi H, Ye P, et al.m6 A RNA Methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017, 18:2622-2634. [46] Zhang S, Zhao BS, Zhou A, et al. m6 a demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation Program[J]. Cancer Cell, 2017, 31:591-606. e596. [47] Frohling S, Scholl C, Gilliland DG, et al.Genetics of myeloid malignancies:pathogenetic and clinical implications[J]. J Clin Oncol, 2005, 23:6285-6295. [48] Vu LP, Pickering BF, Cheng Y, et al.The N6-methyladenosine m6 A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017, 23:1369-1376. [49] Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6 a modification[J]. Cell Stem Cell, 2018, 22:191-205. e9. [50] Barbieri I, Tzelepis K, Pandolfini L, et al.Promoter-bound METTL3 maintains myeloid leukaemia by m6 A-dependent translation control[J]. Nature, 2017, 552:126-131. [51] Bansal H, Yihua Q, Iyer SP, et al.WTAP is a novel oncogenic protein in acute myeloid leukemia[J]. Leukemia, 2014, 28:1171-1174. [52] Li Z, Weng H, Su R, et al.FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31:127-141. [53] Su R, Dong L, Li C, et al.R-2HG exhibits anti-tumor activity by targeting FTO/m6 A/MYC/CEBPA signaling[J]. Cell, 2018, 172:90-105. [54] Bosch FX, Ribes J, Borras J.Epidemiology of primary liver cancer[J]. Semin Liver Dis, 1999, 19:271-285. [55] Schulze K, Imbeaud S, Letouze E, et al.Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47:505-511. [56] Chen M, Wei L, Law CT, et al.RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67:2254-2270. [57] Zhao X, Chen Y, Mao Q, et al.Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Biomark, 2018, 21:859-868. [58] Yang Z, Li J, Feng G, et al.MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3’-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein[J]. J Biol Chem, 2017, 292:3614-3623. [59] Ma JZ, Yang F, Zhou CC, et al.METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65:529-543. [60] Charafe-Jauffret E, Ginestier C, Iovino F, et al.Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature[J]. Cancer Res, 2009, 69:1302-1313. [61] Creighton CJ, Li X, Landis M, et al.Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features[J]. Proc Natl Acad USA, 2009, 106:13820-13825. [62] Zhang C, Samanta D, Lu H, et al.Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6 A-demethylation of NANOG mRNA[J]. Proc Natl Acad USA, 2016, 113:E2047-2056. [63] Zhang C, Zhi WI, Lu H, et al.Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016, 7:64527-64542. [64] Cai X, Wang X, Cao C, et al.HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018, 415:11-19. [65] Araz O, Ucar EY, Meral M, et al.Frequency of Class I and II HLA alleles in patients with lung cancer according to chemotherapy response and 5-year survival[J]. Clin Respir J, 2015, 9:297-304. [66] Latimer KM, Mott TF.Lung cancer:diagnosis, treatment principles, and screening[J]. Am Fam Physician, 2015, 91:250-256. [67] Lin S, Choe J, Du P, et al.The m6 a methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016, 62:335-345. [68] Du M, Zhang Y, Mao Y, et al.MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA[J]. Biochem Biophys Res Commun, 2017, 482:582-589. [69] Liu J, Ren D, Du Z, et al.m6 a demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502:456-464. |
[1] | 安磊, 赵金玲, 任晓亮. RNA修饰及其在秀丽隐杆线虫中的研究进展[J]. 生物技术通报, 2023, 39(4): 176-186. |
[2] | 陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243. |
[3] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[4] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[5] | 李平, 胡建燃, 史宝忠, 赵晶磊. 黄芩多糖的提取及其抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2021, 37(4): 155-163. |
[6] | 尹晓梦, 曹雪玮, 王富军, 赵健, 张惠展. 雷公藤红素与凋亡蛋白突变体通过强化Nur77诱发凋亡通路发挥协同抗肿瘤作用[J]. 生物技术通报, 2020, 36(7): 119-129. |
[7] | 刘洋, 曹雪玮, 卢美雅, 王富军, 赵健. 通过细胞穿膜肽和皂苷增强一种核糖体失活蛋白抗肿瘤活性[J]. 生物技术通报, 2019, 35(8): 146-154. |
[8] | 李晓玉, 刘霖, 邢兵, 汤婧, 刘亚平, 周祖平, 蒲仕明. 炎症与肿瘤发生对造血祖细胞发育失衡的影响[J]. 生物技术通报, 2019, 35(8): 155-161. |
[9] | 金宏杰, 曹红, 刘红, 郑爽, 姜超. 龙脑樟树叶内生真菌的分离及生物活性菌株的筛选鉴定[J]. 生物技术通报, 2019, 35(3): 53-58. |
[10] | 雷蕾, 包鹏甲, 梁春年, 褚敏, 阎萍. 成纤维细胞生长因子5研究进展[J]. 生物技术通报, 2019, 35(3): 144-150. |
[11] | 姚琳通, 刘娅婷, 刘雅静, 陈真真. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2): 182-191. |
[12] | 胡建燃, 李平, 铁军, 金山. 紫丁香花精油的抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2019, 35(12): 16-23. |
[13] | 武晓林, 王超儀, 包海鹰. 不同“桑黄”类真菌水提取物的抗肿瘤活性研究[J]. 生物技术通报, 2018, 34(8): 138-143. |
[14] | 霍桂桃, 杨艳伟, 吴曦, 刘甦苏, 李芊芊, 周舒雅, 柳全明, 王三龙, 沈月雷, 吕建军, 范昌发. p53基因敲除大鼠模型的构建及表型分析[J]. 生物技术通报, 2018, 34(8): 170-174. |
[15] | 翟逸舟 ,卢美雅 ,赵健 ,王富军. 白树毒素融合蛋白的筛选及其抗肿瘤作用和凋亡途径研究[J]. 生物技术通报, 2018, 34(6): 204-212. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 273
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 402
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||