生物技术通报 ›› 2018, Vol. 34 ›› Issue (1): 40-48.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0703
张凡1, 尹俊龙1, 郭瑛琪2, 岳艳玲1
收稿日期:
2017-08-24
出版日期:
2018-01-26
发布日期:
2018-01-22
作者简介:
张凡,女,硕士研究生,研究方向:蔬菜遗传育种;E-mail:972794323@qq.com
基金资助:
ZHANG Fan1, YIN Jun-long1, GUO Ying-qi2, YUE Yan-ling1
Received:
2017-08-24
Published:
2018-01-26
Online:
2018-01-22
摘要: WRKYs是高等植物中最大的转录因子家族(TFs)之一。它具有特殊结构-WRKY结构域,这些结构可使WRKY转录因子拥有不同的转录调控功能。WRKY TFs不仅可以通过调节植物激素信号转导途径来调节它们的应激反应,还可以结合其靶基因启动子中的W-box[TGACC(A / T)],通过激活或抑制下游基因的表达来调节它们的应激反应。此外,WRKY蛋白不仅可以与其他TFs相互作用来调控植物防御反应,而且还可以通过识别和结合本身目标基因中的W-box进行自我调节以调控其对各种压力的防御反应。因此,WRKY TFs不管是在植物响应生物胁迫中,还是非生物胁迫中都具有重要的作用。但是,近年来,关于WRKY TFs在高等植物中的调控作用的研究综述稀少且深度较浅。重点阐述了WRKY TFs的结构特征和分类,在植物生物胁迫和非生物胁迫中发挥的作用,以及通过调节植物激素信号转导途径、MAPK信号级联和自调控来调控各种胁迫,以期为将来WRKY TFs的研究提供理论参考和思路。
张凡, 尹俊龙, 郭瑛琪, 岳艳玲. WRKY转录因子的研究进展[J]. 生物技术通报, 2018, 34(1): 40-48.
ZHANG Fan, YIN Jun-long, GUO Ying-qi, YUE Yan-ling. Research Advances on WRKY Transcription Factors[J]. Biotechnology Bulletin, 2018, 34(1): 40-48.
[1] Jiang Y, Zeng B, Zhao HN, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. J Integr Plant Biol, 2012, 54(9):616-630. [2] Bakshi M, Oelmüller R. WRKY transcription factors[J]. Plant Signaling & Behavior, 2014, 9(2):247-258. [3] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular Genetics and Genomics, 1994, 244(6):563-571. [4] Rushton, Paul J, Somssich, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258. [5] Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of an Arabidopsis WRKY DNA binding domain[J]. Plant Cell, 2005, 17(3):944-956. [6] Xie Z, Zhang ZL, Zou X, et al. Annotations and functional analyses of the rice WRKY gene super family reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137:176-189. [7] Zhang Y, Wang L. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1):1-12. [8] Li H, Yan X, Yu X, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1, and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010, 232(6):1325-1337. [9] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2):120-128. [10] Shi W, Hao L, Li J, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports, 2014, 33(3):483-498. [11] Wang X, Yan Y, Li Y, et al. GhWRKY40, a Multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One, 2014, 9(4):e93577. [12] Wen F, Zhu H, Li P, et al. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon[J]. DNA Research, 2014, 21(3):327-339. [13] Zhang Y, Feng JC. Identification and characterization of the grape WRKY family[J]. Biomed Research International, 2014, 2014:doi:10.1155/2014/787680. [14] Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact, 2010, 23:558-565. [15] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110(21):1963-1971. [16] Cheng HT, Wang SP. WRKY-Type transcription factors:a significant factor in rice-pathogen interactions[J]. Scientia Sinica, 2014, 44(8):784-793. [17] Wang J, Tao F, An F, et al. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Mol Plant Pathol, 2016, 18(5):649-661. [18] Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371. [19] Deng H, Xing, Zi B, et al. Stress- and pathogen-induced arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3):459-470. [20] Hwang KF, Chang CC. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell, 2001, 13(7):1527-1540. [21] Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875):977-983. [22] Akira N, Setsuko F, Shingo G, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice[J]. BMC Plant Biology, 2013, 13(1):150-160. [23] Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress:current understanding and future directions[J]. Frontiers in Plant Science, 2016, 7:1029. [24] Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:Key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11. [25] Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:Achievements and challenges[J]. Plant Science, 2013, 205(5):38-47. [26] Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017, 22(1):53-65. [27] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252. [28] Li S, Xiang Z, Chen L, et al. Functional characterization of Arabidopsis thaliana, WRKY39 in heat stress[J]. Molecules and Cells, 2010, 29(5):475-483. [29] He GH, Xu JY, Wang YX, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1):116-131. [30] Liu QL, Zhong M, Li S, et al. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, intobacco enhances tolerance to salt stress[J]. Plant Physiol Biochem Ppb, 2013, 69(8):27-33. [31] Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45, enhances disease resistance and drought tolerance in Arabidopsis [J]. Environmental & Experimental Botany, 2009, 65(1):35-47. [32] Yu S, Ligang C, Liping Z, et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis[J]. Journal of Biosciences, 2010, 35(3):459-471. [33] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1):21-30. [34] Wang C, Deng P, Chen L, et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2013, 8(6):e65120. [35] Wang F, Hou X, Tang J, et al. A novel cold-inducible gene from Pak-choi(Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco[J]. Mol Biol Rep, 2012, 39(4):4553-4564. [36] Jiang WB, Yu DQ. Arabidopsis WRKY2 transcription factor may be involved in osmotic stress response[J]. Acta Botanica Yunnanica, 2009, 31(5):427-432. [37] Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Reports, 2015, 34(8):1295-1306. [38] Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell, 2005, 17(1):268-281. [39] Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. J Biol Chem, 2004, 279:11736-11743. [40] Ying M, Laun T M, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Molecular Biology, 2007, 65(1):63-76. [41] Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J]. Molecular plant-microbe interactions:MPMI, 2012, 25(12):1639. [42] Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(3):e0120646. [43] Berri S, Abbruscato P, Faivre-Rampant O, et al. Characterization of WRKY co-regulatory networks in rice and Arabidopsis[J]. BMC Plant Biology, 2009, 9(1):120-141. [44] Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53, during leaf senescence of Arabidopsis thaliana[J]. European Journal of Cell Biology, 2010, 89(2-3):133-137. [45] Banerjee A, Roychoudhury A. WRKY proteins:signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015:807560. [46] Turck F, Zhou A, Somssich I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J]. Plant Cell, 2004, 16(10):2573-2585. [47] Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5):1310-1326. [48] De ZA, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 2016, 21(8):677-685. [49] Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence[J]. Curr Opin Plant Biol, 2009, 12(4):421-426. [50] Fiil BK, Petersen K, Petersen M, et al. Gene regulation by MAP kin- ase cascades[J]. Curr Opin Plant Biol, 2009, 12(5):615-621. [51] Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity[J]. Curr Opin Plant Biol, 2012, 15(4):431-437. [52] Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27(16):2214-2221. [53] Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2(Bcl-2)-associated athanogene 7(BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29[J]. New Phytologist, 2016, 214(2):695-705. [54] Danquah A, De ZA, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnology Advances, 2014, 32(1):40-52. [55] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51:21-37. [56] Li S, Zhou X, Chen L, et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J]. Mol Cells, 2010, 29:475-483. [57] Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20:2357-2371. [58] Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19:2064-2076. [59] Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26:230-245. [60] Zou X, Seemann JR, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway[J]. J Biol Chem, 2004, 279:55770-55779. [61] Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Mol Plant, 2012, 5:1375-1388. [62] Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935. [63] Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiol Biochem, 2016, 108:478-487. [64] Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11:e0150572. [65] Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. [66] Chan YP, Ju HL, Jae HY, et al. WRKY group IId transcription factors interact with calmodulin[J]. Febs Letters, 2005, 579(6):1545-1550. [67] Ishida S, Fukazawa J, Yuasa T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10):2641-2651. [68] Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259. [69] Kumaran S, Yi H, Krishnan HB, et al. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions[J]. J Biol Chem, 2009, 284(15):10268-10275. [70] Shen YH, Godlewski J, Bronisz A, et al. Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding[J]. Mol Biol Cell, 2003, 14(11):4721-4733. [71] Arulpragasam A, Magno AL, Ingley E, et al. The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling[J]. Biochemical Journal, 2012, 441(3):995-1006. [72] Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. [73] Seo PJ. Recent advances in plant membrane-bound transcription factor research:Emphasis on intracellular movement[J]. J Integr Plant Biol, 2014, 56(4):334-342. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[6] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[7] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[8] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[9] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[10] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[11] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[12] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[13] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[14] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[15] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||