[1]Jones SM, Solomon EI. Electron transfer and reaction mechanism of laccases[J]. Cellular and Molecular Life Sciences, 2015, 72(5):869-883. [2]Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases[J]. Cellular and Molecular Life Sciences, 2015, 72(5):923-940. [3]Torressalas P, Mate DM, Ghazi I, et al. Widening the pH activity profile of a fungal laccase by directed evolution[J]. ChemBioChem, 2013, 14(8):934-937. [4]Martins LO, Dur?o P, et al. Laccases of prokaryotic origin:enzymes at the interface of protein science and protein technology[J]. Cellular and Molecular Life Sciences, 2015, 72(5):911-922. [5]Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis[J]. Environmental Microbiology Reports, 2014, 6(3):212-215. [6] Kalyani DC, Munk L, et al. Molecular and biochemical characteriza-tion of a new thermostable bacterial laccase from Meiothermus ruber DSM 1279[J]. RSC Advances, 2015, 6(5):3910-3918. [7]Gunne M, Al-Sultani D, Urlacher VB, et al. Enhancement of copper content and specific activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper chaperone in E. coli[J]. Journal of Biotechnology, 2013, 168(3):252-255. [8]Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli:advances and challenges[J]. Frontiers in Microbiology, 2014, 5(172):172-184. [9]Lu L, Zhao M, Wang TN, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04[J]. Bioresour Technol, 2012, 115(13):35-40. [10] Reiss R, Ihssen J, Th?ny-Meyer L. Bacillus pumilus laccase:a heat stable enzyme with a wide substrate spectrum[J]. BMC Biotechnology, 2011, 11(1):9-20. [11]Guan ZB, Song CM, Zhang N, et al. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3[J]. J Mol Catal B Enzym, 2014, 101(1-2):1-6. [12]Mate DM, Alcalde M. Laccase engineering:from rational design to directed evolution[J]. Biotechnology Advances, 2015, 33(1):25-40. [13]Guan ZB, Zhang N, Song CM, et al. Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1[J]. App Biochem Biotechnol, 2014, 172(3):1147-1157. [14]Molinaguijarro JM, Mu?ozdorado J, Pérez J, et al. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea[J]. International Microbiology, 2009, 12(1):13-21. [15]Pereira L, Coelho AV, et al. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase[J]. Journal of Biotechnology, 2009, 139(1):68-77. [16]Lon?ar N, Bo?i? N, Lopez-Santin J, et al. Bacillus amyloliquefaciens laccase-from soil bacteria to recombinant enzyme for wastewater decolorization[J]. Bioresour Technol, 2013, 147:177-183. [17]Krainer FW, Dietzsch C, et al. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway[J]. Microbial Cell Factories, 2012, 11(1):22-36. [18]Lu L, Wang TN, et al. Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization[J]. Bioresour Technol, 2013, 134(5):81-86. [19]Chen B, Xu WQ, Pan XR, et al. A novel non-blue laccase from Bacillus amyloliquefaciens:secretory expression and characterization[J]. International Journal of Biological Macromolecules, 2015, 76:39-44. [20]Zhang ZH, Yang SS, Zhang AL. Using pGAP promoter to express of laccase gene from Bacillus subtilis in P. pastoris[J]. Biotechnology, 2011, 21(6):24-27. [21]Manu B, Chaudhari S. Anaerobic decolorisation of simulated textile wastewater containing azo dyes[J]. Bioresour Technol, 2002, 82(3):225-231. [22]Jimenez-Juarez N, Roman-Miranda R, Baeza A, et al. Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea[J]. Journal of Biotechnology, 2005, 117(1):73-82. [23]Callejón S, Sendra R, Ferrer S, et al. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation[J]. Appl Microbiol Biotechnol, 2016, 100(7):3113-3124. [24]Rezaei S, Shahverdi AR, Faramarzi MA. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp[J]. Bioresour Technol, 2017, 230:67-75. [25]Safary A, Moniri R, Hamzeh-Mivehroud M, et al. A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli[J]. Journal of Biotechnology, 2016, 227:56-63. [26]Liu Y, Huang L, Guo W, et al. Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization[J]. Process Biochemistry, 2016, 53:125-134. [27]Yuan X, Tian G, Zhao Y, et al. Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis[J]. Molecules, 2016, 21(2):203-218. [28]Halaburgi VM, Sharma S, Sinha M, et al. Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications[J]. Process Biochemistry, 2011, 46(5):1146-1152. [29]Ricklefs E, Koschorreck K, Winkler N, et al. Expanding the laccase-toolbox:a laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity[J]. Journal of Biotechnology, 2014, 191:46-53. [30]Lon?ar N, Bo?i? N, Vuj?i? Z. Expression and characterization of a thermostable organic solvent-tolerant laccase from Bacillus licheniformis ATCC 9945a[J]. J Mol Catal B Enzym, 2016, 134:390-395. [31]Pawlik A, Wójcik M, Rulka K, et al. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene[J]. International Journal of Biological Macromolecules, 2016, 92:138-147. [32]Sondhi S, Sharma P, Saini S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4[J]. PLoS One, 2014, 9(5):e96951. [33]Yavuz M, Kaya G, Aytekin ?. Using Ceriporiopsis subvermispora CZ-3 laccase for indigo carmine decolourization and denim bleaching[J]. International Biodeterioration and Biodegradation, 2014, 88(1):199-205. [34]Pan K, Zhao N, et al. Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization[J]. Bioresour Technol, 2014, 162(6):45-52. [35]Cho EA, Seo J, Lee DW, et al. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores[J]. Enzyme Microb Technol, 2011, 49(1):100-104. [36]Koschorreck K, Wahrendorff F, Biemann S, et al. Cell thermolysis-A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes[J]. Process Biochemistry, 2017, 56:171-176. [37]Shi X, Liu Q, Ma J, et al. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities[J]. Biotechnology Letters, 2015, 37(11):2279-2288. [38]Liu H, Cheng Y, Du B, et al. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0. 5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization[J]. PLoS One, 2015, 10(3):e0119833. [39]Afreen S, Bano F, Ahmad N, et al. Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10(5):403-410. [40]Dassi D, Rodríguez-Couto S, Nasri M, et al. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads[J]. International Biodeterioration and Biodegradation, 2014, 90(1):71-78. |