[1] Ullah K, Sharma VK, Ahmad M, et al.The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82:3992-4008. [2] Arevalo-Gallegos A, Ahmad Z, Asgher M, et al.Lignocellulose:a sustainable material to produce value-added products with a zero waste approach-a review[J]. Int J Biol Macromol, 2017, 99:308-318. [3] Van Dyk JS, Gama R, Morrison D, et al.Food processing waste:problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation[J]. Renewable and Sustainable Energy Reviews, 2013, 26:521-531. [4] Karimi K, Taherzadeh MJ.A critical review of analytical methods in pretreatment of lignocelluloses:composition, imaging, and crystallinity[J]. Bioresource Technology, 2016, 200:1008-1018. [5] Chen HY, Liu JB, Chang X, et al.A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Processing Technology, 2017, 160:196-206. [6] Menon V, Rao M.Trends in bioconversion of lignocellulose:biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38:522-550. [7] Chen HZ, Qiu WH.Key technologies for bioethanol production from lignocellulose[J]. Biotechnology Advances, 2010, 28:556-562. [8] Jönsson LJ, Martín C.Pretreatment of lignocellulose:formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199:103-112. [9] Van Dyk JS, Pletschke BI.A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30:1458-1480. [10] Ni J, Tokuda G.Lignocellulose-degrading enzymes from termites and their symbiotic microbiota[J]. Biotechnology Advances, 2013, 31:838-850. [11] Liang LY, Xue DS.Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities[J]. Process Biochemistry, 2017, 63:163-168. [12] Idris ASO, Pandey A, Rao SS, et al.Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover[J]. Bioresource Technology, 2017, 242:265-271. [13] Li JG, Zhang SK, Li HL, et al.Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers[J]. Bioresource Technology, 2018, 251:1-6. [14] Prajapati BP, Suryawanshi RK, Agrawal S, et al.Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues[J]. Bioresource Technology, 2018, 250:733-740. [15] Wilson DB.Cellulases and biofuels[J]. Current Opinion in Biotechnology, 2009, 20:295-299. [16] Behera BC, Sethi BK, Mishra RR, et al.Microbial cellulases-diversity & biotechnology with reference to mangrove environment:a review[J]. Journal of Genetic Engineering and Biotechnology, 2017, 15:197-210. [17] Juturu V, Wu JC.Microbial cellulases:engineering, production and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 33:188-203. [18] Imran M, Anwar Z, Zafar M, et al.Hyper-productivity, characterization, and exploitation of a cellulase complex from a novel isolate of Aspergillus tubingenesis S2 using lignocellulose-based material[J]. BioResources, 2017, 12:5649-5663. [19] Dashtban M, Maki M, Leung KT, et al.Cellulase activities in biomass conversion:measurement methods and comparison[J]. Critical Reviews in Biotechnology, 2010, 30:302-309. [20] Shajahan S, Moorthy IG, Sivakumar N, et al.Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India[J]. Journal of King Saud University-Science, 2017, 29:302-310. [21] Zhang F, Zhao XQ, Bai FW.Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1[J]. Bioresource Technology, 2018, 247:676-683. [22] 贾博涵, 周伟, 赵罗迪, 等. 一株产纤维素酶细菌的分离鉴定及酶学特性研究[J]. 生物技术通报, 2014(11):187-192. [23] 柴秀娟, 李曹龙, 孔德真, 等. 产纤维素酶菌株的筛选、鉴定及产酶条件的优化[J]. 生物技术通报, 2014(9):164-170. [24] 李争明, 张娟, 邓中洋, 等. 纤维素酶产生菌的筛选、鉴定及发酵产酶条件优化[J]. 生物技术通报, 2015(5):146-152. [25] 王垚, 韩燕峰, 虞泓, 等. 爱尔兰帚霉产低温纤维素酶的酶学性质和发酵工艺[J]. 菌物学报, 2017, 36(8):1132-1140. [26] 于俊杰, 赫荣琳, 武改红, 等. 复合木质纤维素酶菌株筛选及其培养条件优化[J]. 生物技术通报, 2013(4):101-109. [27] 李慧燕, 林良才, 肖冬光, 等. 粗糙脉孢菌C2H2转录因子家族基因敲除突变体产纤维素酶筛选分析[J]. 菌物学报, 2016, 35(2):161-169. [28] Okereke OE, Akanya HO, Egwim EC.Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12:253-259. [29] Albuquerque ED, Torres FAG, Fernandes AAR, et al.Combined effects of high hydrostatic pressure and specific fungal cellulase improve coconut husk hydrolysis[J]. Process Biochemistry, 2016, 51(11):1767-1775. [30] Metreveli E, Kachlishvili E, Singer SW, et al.Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune[J]. Bioresource Technology, 2017, 241:652-660. [31] Tamboli AS, Waghmare PR, Khandare RV, et al.Comparative analyses of enzymatic activity, structural study and docking of fungal cellulases[J]. Gene Reports, 2017, 9:54-60. [32] Srivastava N, Srivastava M, Mishra PK, et al.Applications of fungal cellulases in biofuel production:advances and limitations[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2379-2386. [33] Obeng EM, Budiman C, Ongkudon CM.Identifying additives for cellulase enhancement-a systematic approach[J]. Biocatalysis and Agricultural Biotechnology, 2017, 11:67-74. [34] Kuhad RC, Deswal D, Sharma S, et al.Revisiting cellulase production and redefining current strategies based on major challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 55:249-272. [35] Zhang YHP, Himmel ME, Mielenz JR.Outlook for cellulase improvement:screening and selection strategies[J]. Biotechnology Advances, 2006, 24:452-481. [36] 戴玉成, 庄剑云. 中国菌物已知种数[J]. 菌物学报, 2010, 29(5):625-628. [37] Ma FY, Yang N, Xu CY, et al.Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth[J]. Bioresource Technology, 2010, 101:9600-9604. [38] Sindhu R, Binod P, Pandey A.Biological pretreatment of lignocellulosic biomass-an overview[J]. Bioresource Technology, 2016, 199:76-82. [39] Shirkavand E, Baroutian S, Gapes DJ, et al.Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment-a review[J]. Renewable and Sustainable Energy Reviews, 2016, 54:217-234. [40] Cui BK, Li HJ, Dai YC.Wood-rotting fungi in eastern China 6. Two new species of Antrodia(Basidiomycota)from Mt. Huangshan, Anhui Province[J]. Mycotaxon, 2011, 116:13-20. [41] Ghose TK.Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59:257-268. [42] Deswal D, Khasa YP, Kuhad RC.Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation[J]. Bioresource Technology, 2011, 102:6065-6072. [43] Jain L, Agrawal D.Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse:a robust bioprospecting strategy for biofuel enzymes[J]. Renewable Energy, 2018, 115:978-988. [44] 贾翠英, 张玉辉, 王振河. 一株毛栓菌静置液体发酵产纤维素酶条件研究[J]. 菌物学报, 2012, 31(5):736-744. [45] Wang W, Yuan TQ, Wang K, et al.Statistical optimization of cellulase production by the brown rot fungi, Fomitopsis palustris, and its application in the enzymatic hydrolysis of LHW-pretreated woody biomass[J]. Process Biochemistry, 2012, 47:2552-2556. [46] 李杏春, 何双辉, 戴玉成. 大伏革菌产纤维素酶条件优化及高效菌株筛选[J]. 生物技术通报, 2014(4):152-158. [47] Imran M, Anwar Z, Irshad M, et al.Optimization of cellulase production from a novel strain of Aspergillus tubingensis IMMIS2 through response surface methodology[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12:191-198. [48] 汪彬彬, 车振明. Plackett-Burman和Box-Benhnken Design实验设计法优化华根霉产糖化酶发酵培养基的研究[J]. 食品科技, 2011, 36(5):41-45. [49] 崔秀秀, 韩梅, 李丽娜, 等. 利用响应面法优化耐冷纤维素降解菌产内切纤维素酶的发酵条件[J]. 华中农业大学学报, 2016, 35(4):62-69. [50] 藏金萍, 韩志校, 姜军坡. 响应面法优化产纤维素酶菌株深层液体发酵的条件[J]. 江苏农业科学, 2016, 44(2):368-370, 374. [51] 郑豪盈, 樊永欣, 张林, 等. 书虱伴生菌中纤维素酶产生菌的筛选、鉴定及最佳产酶发酵条件的优化[J]. 环境工程学报, 2015, 9(8):4090-4096. [52] 张辉, 桑青. 响应面法优化黑曲霉HQ-1产纤维素酶固体发酵条件[J]. 中国酿造, 2011(7):17-21. |